Physics 234 Homework 1 (Due Wednesday, January 13) LRC circuits #### Problem 1. LC oscillators have been used in circuits connected to load speakers to create some of the sounds of "electronic music". What inductance must be used with a 6.7 μF capacitor to produce a frequency of 10000 Hz, about the middle of the audible range of frequencies? # Problem 2. Consider the circuit shown in the figures page. With the switch S_1 closed and the other two switches open, the circuit has a time contant τ_C . With switch S_2 closed and the other two switches open, the circuit has a time constant τ_L . With switch S_3 closed and the other two switches open, the circuit oscillates with a period of oscillation T. Show that $T = 2\pi\sqrt{\tau_C\tau_L}$. #### Problem 3. You are given a 10 mH inductor and two capacitors of 6 μF and 3 μF . Find the resonant frequencies that can be generated by connecting these elements in various combinations. Note: the capacitors will only be in series or parallel with each other, and you can determine the equivalent capacitance. ### Problem 4. In an LRC series circuit, show that the fraction of the energy lost per cycle of oscillation, $\Delta U/U$, is given to a close approximation by $2\pi R/(\omega L)$. The quantity $\omega L/R$ is called the "Q" of the circuit. A "high-Q" circuit has low resistance and a narrow resonance. #### Problem 5. A 50 mH inductor is connected to an ac generator that has a maximum voltage $V_{max} = 30 \ V$. What is the amplitude of the resulting current if the frequency of the ac voltage is (a) 1.0 kHz, (b) 8.0 kHz? #### Problem 6. At what frequency would a 6.0 mH inductor and a 10 μF capacitor have the same reactance? # Problem 7. A coil of self-inductance 88 mH and unknown resistance and a 0.94 μF capacitor are connected in series with an oscillator of frequency 930 Hz. If the phase angle between the applied voltage and current is 75°, what is the resistance of the coil? # Problem 8. The ac generator shown in the figures page supplies $120 \ V$ (rms) at $60 \ Hz$. With the switch open as shown, the resulting current leads the generator voltage by 20° . With the switch in position 1, the current lags the generator voltage by 10° . When the switch is in position 2 the rms current is $2.0 \ A$. Find the values of R, L, and C. #### Problem 9. In the figure shown, $R = 15 \Omega$, $C = 4.7 \mu F$, and L = 25 mH. The internal resistance of the inductor is 5Ω . The generator provides a sinusoidal voltage of 75 V (rms) and frequency f = 550 Hz. Calculate (a) the rms current amplitude, and (b) V_{ab} , V_{bc} , V_{cd} , V_{bd} , and V_{ac} . #### Problem 10. Consider the LC resonant circuit shown in the figures page. The capacitor is a parallel plate capacitor that has an area A and plate separation d. The inductor has a total of N turns, a length L, and a radius r. Find an expression for the resonant frequency in terms of ϵ_0 , μ_0 , A, d, L, and r. Note, if one could measure the resonant frequency and the other parameters, one could get an estimate of the product $\epsilon_0\mu_0$. See the next page for the figures # Figures for HWK 1,