
Many dynamical systems in Physics are ”non-linear”. These systems are described
by equations (or differential equations) that do not have the properties of linear
ones. For example, suppose x1(t) and x2(t) are possible functions for the position on
the x − axis for a system consisting of one particle. Let a and b be constants. If
(ax1(t) + bx2(t)) is also a possible function for the position of the particle, then the
one particle system is a linear one. If not, it is non-linear.

The properties of non-linear systems are quite different than linear ones. Some of
these properties were discovered from a simple iterative mapping equation, the logis-
tics map. The logistics map is also used as an introduction to the period-doubling
route to chaos, and deterministic chaos. We start our treatment of nonlinear systems
with this classic example.

The Logistic Map

Consider the function f(x), which generates a series of numbers in the following
manner:

xn+1 = f(xn) (1)

where n is an integer. Given an initial ”seed”, x0, this equation generates a series of
numbers.

This ”iterative map” approach is one used by ecologists in describing certain
biological systems. For example, xn could represent the number of fish in a pond for
the n’th year. Suppose that the fish eggs hatch in spring, the fish grow in summer,
the fish lay eggs in fall and then die. For this type of fish species, xn represents the
number of fish that hatch in spring. If conditions are good in year n, then perhaps
xn+1 > xn. Under bad conditions, xn+1 < xn.

The simplest model for f(x) is f(x) = ax where a is a real constant. That is:

xn+1 = axn (2)

If a < 1, then xn → 0 as n → ∞. This situation might represent the case of a
pond going ”bad” and the fish go extinct. If a > 1, then xn gets larger each year
by the factor a. This situation might represent the case when there are a small
initial number of fish without any preditors. Of course, the fish population can’t keep
increasing forever. This simple model, f(x) = ax, is a linear model for the fish pond,
and is not generally representative of real populations in nature. To more accurately
model a real population system, f(x) needs to be nonlinear. A simple nonlinear model
is to have f(x) = ax − bx2, with a and b greater than zero. The linear term causes
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the population to increase, and the quadratic term causes the population to decrease.
The iterative map is:

yn+1 = ayn − by2
n (3)

One can rescale y such that there is only one parameter for the map. If we let
y = (a/b)x, then we have

a

b
xn+1 =

a2

b
xn −

a2

b
x2

n (4)

Dividing by (a/b) yields

xn+1 = a(xn − x2
n) (5)

In most textbooks, the constant a is named r. With this notation the iterative map
takes the form:

xn+1 = rxn(1 − xn) (6)

and is called the ”logistic map”, f(r, x) = rx(1 − x). This simple equation yields
many of the properties of non-linear systems. The allowed values for r are 0 ≤ r ≤ 4.
If r is restricted to this range, then the xn will lie between zero and one: 0 ≤ xn ≤ 1.

Period Doubling Route to Chaos

We will demonstrate the period-doubling route to chaos with the logistic map
f(r, xn). There is one parameter which characterizes the map, r, and is called the
”control parameter”. Once an initial seed x0 is chosen then the series xn, n = 1 → ∞,
can be generated for the particular control parameter r.

You will write a computer program to iterate the logistic map and examine the
limiting values of xn for large n. Here is what you should find:

1. For values of 0 ≤ r ≤ 1, the series will decrease to a limiting value of xn → 0 as
n → ∞.

2. For values of 1 ≤ r < 3, the series will converge to a single value as n → ∞. We
will show that the value that the series converges to is xn → (1 − 1/r) as n → ∞.

You might wonder if these limiting values depends on the choice of the seed, x0.
It turns out that it does not. For any seed value 0 < x0 < 1 the limiting value is the
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same. We call this type of behavior ”Period-1”, because it takes one iteration for the
xn series to repeat in the limit of large n. In the fish pond analogy, the meaning is
that the pond is a stable ecological system, with the same number of fish born every
spring.

As r is increased, the limiting values of xn show very interesting behavior. What
you will find is that for 3 < r ≤∼ 3.449, the xn alternate between two values. There
are two limiting values, which alternate between each other. This type of behavior is
called ”Period-2”, since it takes two iterations for the xn series to repeat (in the limit
of large n). In the fish pond analogy, the pond would have a large number of fish
one year, the next year a small number of fish, the next year would yield the large
number of fish, etc. This sort of period-2 behaviour actually occurs in some biological
systems. As with the period-1 case, the limiting values do not depend on the choice
of the initial seed.

If you increase r past 3.449 you will notice that it takes 4 interations for the series
to repeat. This ”period-4” behavior will continue until you reach r ≈ 3.544. As you
increase r past ≈ 3.544 you should see that it takes 8 interations for the series to
repeat. This period-doubling behavior continues until the value of r is approximately
3.5699. For values of r just above 3.5699, say r = 3.6, the xn series never repeats!
This type of behavior is refered to as ”deterministic chaos”.

We summarize the critical values for r for which the period doubles in the table
below. These values of r are transendental numbers, and we only list them to seve
significant figures.

Value of r Behavior
r1 = 3.0 Period 2 begins

r2 ≈ 3.449489 Period 4 begins
r3 ≈ 3.544090 Period 8 begins
r4 ≈ 3.564407 Period 16 begins
r5 ≈ 3.568759 Period 32 begins
r6 ≈ 3.569691 Period 64 begins
r7 ≈ 3.569891 Period 128 begins

· · · · · ·
rN Period 2N begins
· · · · · ·

r ≈ 3.569946 Deterministic Chaos begins

You probably notice that r needs to be increased by smaller amounts for the next
period doubling to occur. In fact there is a value for rN less than ≈ 3.569891 for
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which the behavior is period-2N for any N . Feigenbaum, a particle physicist, was the
first to realize that there is a pattern for the period doubling: r needs to be increased
by a factor of ≈ 1/4.6692 for the next period doubling. That is, if we define δN as:

δN =
rN − rN−1

rN+1 − rN

(7)

Then, δN approaches a constant value as N → ∞. That is,

limN→∞

rN − rN−1

rN+1 − rN

→ 4.66920 . . . (8)

This is a nice result. However, is it only true for the logistic map? Feigenbaum tried
the iterative map

xn+1 = rsin(πxn) (9)

with control parameter r. As r is increased, the limiting values of xn demonstrate
period doubling similar to the logistic map. However, the values of r when period
doubling occurs is different for this map than the logistic map. That is, the rN are
different for the two maps. He next evaluated the limit of

δN =
rN − rN−1

rN+1 − rN

(10)

for f(r, xn) = rsin(πxn). To Feigenbaum’s amazement the limiting value of δN as
N → ∞ was also 4.66920 . . . as with the logistic map! He discovered that there are
a large number of maps which undergo the period-doubling route to chaos with the
same limit for δN as N → ∞. These types of maps are called quadratic maps. The
period-doubling constant 4.66920 . . . is often called Feigenbaum’s constant.

Properties of Deterministic Chaos

If a system has its ”control parameters” in the chaotic regime, the system can
exhibit interesting properties. For the logistic map, this would be for certain ranges
of r greater than 3.569891. We summarize some of the properties below:

1. There is no periodicity in the system. For iterative maps, the xn do not have any
repeating pattern. It is important to realize that the xn are not random, they are
generated by a definate formula. Thus, the xn series is deterministic. Hence the name
deterministic chaos.
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2. There is a great sensitivity to the initial conditions, i.e. the initial seed. Consider
two different initial seeds that are very close to each other, say x0 and y0 = x0 + ǫ.
Let xn be the n’th element in the series that started with x0, and let yn be the n’th
element in the series that started with y0. For systems in the chaotic regime, the xn

and yn diverge exponentially from each other for small n no matter how small ǫ is. For
large n, the xn and yn are very different and one could never predict that they both
started with nearly the same seed and are being generated by the same iterative map.

3. To predict the values of xn for large n exactly, one needs to know x0 to in-
finite accuracy. Due to the sensitivity to the initial conditions, any uncertainty in
the initial starting value x0 eventually become amplified until all predictability is lost.

In lecture, we will discuss the reasons for these properties.

Analysis of the Logistic Map

The period doubling route to chaos for quadratic maps have some universal proper-
ties. In particular, they all have the same ”period doubling constant”, or Feigenbaum
constant. To understand why period doubling might occur we can analyze the logis-
tic map. The logistic map xn+1 = rxn(1 − xn) is simple and has the properties of
quadratic maps in general.

For an iterative map to have periodicity one, or period one, means that as
n → ∞ the xn+1 become equal to xn. For a particular value of r, one can solve the
equation:

xn+1 = xn = rxn(1 − xn) (11)

Solving for xn yields

xn = rxn(1 − xn)

xn = 1 −
1

r

So if xn were to equal (1 − 1/r), then the series would repeat this value of x forever.
We will call this value of x the repeating value and label it xR. This result is true for
any r between one and four. Then, how does period-2 behavior happen? The key
is to examine the convergent/divergent properties of the xn near the repeating value,
i.e. near xR = (1 − 1/r).
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Consider a value of x near the repeating value xR, located a distance ǫ away:
xn = xR + ǫ. What is xn+1?

xn+1 = f(r, xn) = f(r, xR + ǫ) (12)

We can expand f(r, xR + ǫ) about xR: f(r, xR + ǫ) = f(r, xR) + ǫ(∂f/∂x)|xR
+ · · ·.

Substituting into the equation above gives:

xn+1 = f(r, xR) + ǫ
∂f

∂x
|xR

+ · · ·

xn+1 = xR + ǫ
∂f

∂x
|xR

+ · · ·

From this equation, we see that if |(∂f/∂x)|xR
| < 1 then xn+1 is closer to xR than

xn was. In this case, as the series continues the terms will converge to xR. However,
if |(∂f/∂x)|xR

| > 1 then xn+1 is further away from xR than xn was. In this case, as
the series continues the terms will diverge from xR. xR will be an unstable repeating
value. Let’s calculate the value of r for which this occurs for the logistic map. We
first need to calculate (∂f/∂x)|xR

for f(r, x) = rx(1 − x) = rx − rx2:

∂f

∂x
= r − 2rx (13)

We now evaluate this expression at the repeating point x = xR = (1 − 1/r) and
obtain:

∂f

∂x
|xR

= r − 2rxR

= r − 2r(1 −
1

r
)

= 2 − r

Thus, we see that the absolute value of ∂f
∂x
|xR

is less than one for values of r between
one and three. This is why, for 1 < r < 3, lim(n → ∞)xn is a repeating single value.

Period Doubling

For r > 3, the value x = (1 − 1/r) is a repeating value. That is, if x0 = (1 − 1/r)
so will all values of xn. However, if x0 is a little different than (1 − 1/r) the xn will
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not converge to a single repeating value. You might be worried that the series of xn

will diverge and never become stable. However, we have calculated the series and
seen that if 3 < r < 3.449 then xn repeats after two iterations and is stable. This
observation can assist in analyzing the map. We have demonstrated that the xn are
equal to each other after two iterations. That is,

xn+1 = f(r, xn)

xn+2 = f(r, xn+1))

xn+2 = f(r, f(r, xn))

Suppose for n → ∞ we have xn+2 → xn. The value of xn for which this holds is found
by solving for x in the ”interated” equation:

x = f(r, f(r, x)) (14)

We define f (2)(r, x) as

f (2)(r, x) ≡ f(r, f(r, x)) (15)

The ”second iterate” function f (2)(r, x) can be analyzed using the same mathematical
reasoning that we used for f(r, x). That is, the stability of this ”second iterate” of
f(r, x) will depend of the derivative of f (2)(r, x) evaluated at its repeating points. Let
xR1 be a solution to the equation

xR1 = f (2)(r, xR1) (16)

Note that there are two solutions for this ”repeating point” of f (2). Let the other
solution be xR2:

xR2 = f (2)(r, xR2) (17)

Where xR1 and xR2 satisfy

xR2 = f(r, xR1)

xR1 = f(r, xR2)

As discussed with f(r, x), if the first derivative of f (2) evaluated at xR1 (or xR2) lies
between −1 and +1:
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−1 <
∂f (2)

∂x
|xR1

< 1 (18)

then xR1 is a stable repeating value for f (2). We can express the derivative of f (2)

with respect to x in terms of ∂f(r, x)/∂x using the chain rule:

∂f (2)

∂x
|xR1

=
∂f(r, x)

∂x
|xR2

∂f(r, x)

∂x
|xR1

(19)

For the logistic map and values of 3 < r < 3.449 one of these derivatives has a
magnitude greater than one and the other a value less than one. The magnitude of
the product of the two derivatives is less than one, and the ”period-two” behaviour
is stable for r in this range. It is interesting to note that

∂f (2)

∂x
|xR2

=
∂f(r, x)

∂x
|xR1

∂f(r, x)

∂x
|xR2

=
∂f (2)

∂x
|xR1

(20)

That is, each of the period two limiting values, xR1 and xR2, have the same stability

properties. At around r ≈ 3.449, ∂f (2)

∂x
|xR1

becomes equal to −1 and the repeating
period two point becomes unstable. The instability also occurs at xR2 for r ≈ 3.449.
So, each of the two (period 2) values ”bifurcate” at the same r value.

The next function to analyze is f (4)(r, x) = f (2)(r, f (2)(r, x), which is the fourth
iterate of f . Now, there are four values of x that will satisfy

xR1 = f (4)(r, xR1) (21)

As we did before, the stability of the solution to this equation will depend on the
partial derivative of f (4)(r, x) with respect to x evaluated at xR1. The same reasoning
will apply to f (4)(r, x) as with f(r, x) and f (2)(r, x), if the first derivative of f (4)

evaluated at xR1 lies between −1 and +1:

−1 <
∂f (4)

∂x
|xR1

< 1 (22)

then xR1 is a stable repeating value for f (4). We can express the derivative of f (4)

with respect to x in terms of ∂f(r, x)/∂x using the chain rule:

∂f (4)

∂x
|xR1

=
∂f(r, x)

∂x
|xR4

∂f(r, x)

∂x
|xR3

∂f(r, x)

∂x
|xR2

∂f(r, x)

∂x
|xR1

(23)

For the logistic map and values of 3.449 < r < 3.544 this derivative lies between
−1 and +1. However at r ≈ 3.544 the left side of this equation equals −1 and the
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repeating values become unstable. Since each of the four repeating values have the
same derivative for f (4), each of the four repeating values bifurcates at the same r
value. This results in the periodicity going from 4 to 8.

Thus, we see that the periodicity goes from 1 → 2 → 4 → 8 as r is increased.
Further increase of r yields a continual period doubling. The reason that the period
doubles, as opposed to tripling, is due to the chain rule applied to the iterated func-
tions.

Super Stable r values and Calculation of Feigenbaum Constant

One could calculate the values of r when period doubling occurs from the partial
derivatives of f(r, x). However, there is an easier way. We can take advantage of
the way the partial derivatives change within the period doubling interval. Let the
periodicity be labeled m, where m = 2n. We have calculated the period 2 interval
and found that (∂f (2)(r, x)/∂x)|xR

= −1 when the period 2 interval becomes unstable
for xR. For the next iterate, f (4), the start of the interval is at the same xR, and the
partial derivative is ∂f (4)(r, x)/∂x)|xR

= (∂f (2)(r, x)/∂x)|xR
)(∂f (2)(r, x)/∂x)|xR

) =
(−1)(−1) = 1. Thus, the partial derivative of f (4) at the repeating points starts
at +1. As r is increased the partial derivative at the repeating points decreases
causing stability until the partial derivative equals −1. Then a bifurcation occurs.
The process keeps repeating.

Within each period doubling interval of periodicity m = 2n, the partial deriva-
tive of f (m) with respect to x begins with a value of +1 and ends with a value of
−1 when the next bifurcation occurs. The reason for this is that (−1)(−1) = +1:
(∂f (2m)(r, x)/∂x)|xR

= (∂f (m)(r, x)/∂x)|xR
)(∂f (m)(r, x)/∂x)|xR

) = (−1)(−1) = 1.
Therefore, somewhere near the middle of the interval the partial derivative of f (m)

equals zero. The value of r for which the partial of f (m) equals zero is called the
super-stable value, which we lable as sm: (∂f (m)(r, x)/∂x)|sm

= 0. The repeating val-
ues have the most stability at this value of the control parameter r. We demonstrate
this property for the period one interval.

As we discussed earlier, consider a value of x near the repeating value xR, located
a distance ǫ away: xn = xR + ǫ. Then the next value in the series is xn+1 given by

xn+1 = f(r, xn) = f(r, xR + ǫ) (24)

As before, we can expand f(r, xR+ǫ) about xR: f(r, xR+ǫ) = f(r, xR)+ǫ(∂f/∂x)|xR
+

· · ·. Substituting into the equation above gives:
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xn+1 = f(r, xR) + ǫ
∂f

∂x
|xR

+ · · ·

xn+1 = xR + ǫ
∂f

∂x
|xR

+ · · ·

If ∂f
∂x
|xR equals zero, then xn+1 equals the repeating point. The convergence to xR

occurs very quickly in the series. Thus, the name super-stable. For the period one
interval, s1 can be found by solving

∂f

∂x
|xR

= r − 2rxR

= r − 2r(1 −
1

r
)

= 2 − r

0 = 2 − r

r = 2

At r = 2 the first derivative of f(r, x) is zero at x = 1−1/r. There is an easier way to
find the super stable value for r. Since f(r, x) = rx(1 − x), f is symmetric about

x = 1/2 for any value of r. Therefore ∂f
∂x
|x=1/2 = 0 for any value of r. We can

find the super-stable value of r in the period one interval without taking the partial
derivative. We just need to find the value of r such that f(r, 1/2) = 1/2:

1

2
= r

1

2
(1 −

1

2
)

r = 2

s1 = 2

as before. The same reasoning can be applied to the period two interval. The first
derivative of f (2)(r, x) equals

∂f (2)

∂x
|xR1

=
∂f(r, x)

∂x
|xR2

∂f(r, x)

∂x
|xR1

(25)
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using the chain rule. For this derivative to be equal to zero, one of the two derivatives
of f(r, x) must be zero. However, the derivative of f(r, x) is only zero at x = 1/2.
Therefore, at the super stable value for r in the period 2 region, r = s2, one

of the values of x, xR1 or xR2, must be 1/2. Therefore we can find s2 by solving
the the equation:

1

2
= f (2)(s2,

1

2
) (26)

We apply the same reasoning to the period 4, 8, · · ·, m = 2n intervals. In order for
the partial derivative of f (m) to be zero, one of the derivatives of f(r, xRi) must be
zero. The zero partial derivative will only occur at x = 1/2. So, we can generalize:

1

2
= f (m)(sm,

1

2
) (27)

where m = 2n for the period 2n interval. This equation can be solved for any period
2n interval. Determining the super-stable values sm is easier than solving for the
bifurcation values of r, rm. The super-stable values can be obtained by solving the
single algebraic equation above. For the bifurcation values, one needs to solve two
coupled equations: one setting the derivative to −1, and another solving for the
repeating value.

By determining the super-stable values, one can get a good approximation for
Feigenbaum’s constant.

δ = limm→∞

s2m − sm

s4m − s2m

(28)

This is the method Feigenbaum used to estimate his constant.
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