
Statistics of Nuclear Decay

The ”radioactivity” of a radioactive sample decreases in time. By radioactivity we
mean the number of times a radioactive decay occurs in the sample per unit time. A
standard unit of activity is decays per second. In our experiments in the laboratory
we will observe that the radioactivity decreases in a very simple manner, by a ”half-
life” formula. In this chapter, we will present the half-life formula, discuss the physics
behind the formula, and derive an expression for the statistical uncertainty for our
measurements of activity. These three ideas derive from one principle.

”Half-life decay formula”

The number of radioactive nuclei and the activity of a sample decrease in time in
a very simple way, via a ”half-life formula”. Let N(t) be the number of radioactive
nuclei in a sample. There exists a particular time τ , called the half-life, such that
N(t) decreases by a factor of 1/2 after a time τ , for any time t. In other words:
N(t + τ) = N(t)/2 for any time t. For example, suppose initially we start with 64
radioactive nuclei. After a time τ we have 32 radioactive nuclei. After a time 2τ we
have 16 radioactive nuclei, etc. The table below summarizes the results:

Time N(t)
0 64
τ 32 = 64(1/2)2

2τ 16 = 64(1/2)2

3τ 8 = 64(1/2)3

4τ 4 = 64(1/2)4

From the right column, one can deduce a simple formula for N(t):

N(t) = N0(
1

2
)t/τ (1)

where N0 is the number of radioactive nuclei at time t = 0. The formula holds for
our simple example, and also satisfies N(t + τ) = N(t)/2 for any time t. In fact the
formula is valid for any time t, even for times between multiples of τ .

As previously mentioned, the activity of a sample is the number of decays/time.
Units for activity that we will use in this class are:

1 Curie = 3.7 x 1010 decays/sec
1 milli-Curie = 1 mCi = 3.7 x 107 decays/sec
1 micro-Curie = 1µCi = 37,000 decays/sec

1 Bequerel = 1 Bq = 1 decay/sec
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Samples with an activity of a Curie and a milli-Curie is quite hazardous. In our
laboratory, our samples will be a few micro-Curies. Since the activity A(t) equals
−dN

dt
, the activity of a sample also follows the simple half-life formula:

A(t) = A0(
1

2
)t/τ (2)

where A0 is the initial activity, A(t = 0), of the sample.
The half-life τ depends on the particular radioactive nucleus. For example, the

radioisotope 137Cs has a half-life of 30 years. The radioisotope 127Ag has a half-life
of 200 seconds, and 238U a half-life of around 4.47 x 109 years. Half-lives can be as
long as a billion years, or as short as a fraction of a second. To find the half-life of
a particular isotope, you need to look up the value in an appropriate table. I have
links on my home page to sites that have extensive data on nuclei.

The ”Physics” behind the half-life formula
Why does the activity and the number of radioactive nuclei in a sample decrease as

the ”half-life” formula? The answer can be understood from the physics of quantum
mechanics:

A radioactive nucleus has a certain probability per unit time to decay.

The probability to decay/time is termed the ”decay constant”, and is given the
symbol λ. The value of the decay constant depends on the nature of the particular
decay process.

λ ≡ the probabilty to decay per unit time (units of 1/time)

From this assumption, one can ”derive” the half-life decay rule as follows. Letting
N(t) stand for the number of radioactive nuclei in the sample at time t, the number
of nuclei that decay in a time ∆t equals N(t) times the probability that one will decay
in the time ∆t. Stated in an equation, we have:

N(t)−N(t+∆t) = N(t)λ(∆t) (3)

Dividing by ∆t, and multiplying by -1 gives:

N(t+∆t)−N(t)

∆t
= −λ∆t (4)

If we take the limit as ∆t goes to zero, we obtain a simple differential equation for
N(t):
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dN

dt
= −λN (5)

This is a fairly simple differential equation, whose solution is a decaying exponential
function:

N(t) = N0e
−λt (6)

where N0 is the number of radioactive nuclei at time t = 0. This exponential decay
is the same as the half-life decay formula given above. If we change from base e to
base 2, we can see this. Since 2 = eln2 , we have e = 21/(ln2) . If we substitute this
expression for e into the above equation, we obtain:

N(t) = N02
−(λt)/(ln2) = N0(

1

2
)(λt)/ln2) (7)

Comparing this expression with the half-life formula, we see that they are identical
and that the half-life is related to the decay constant by:

τ =
ln2

λ
(8)

This is an important relationship. It allows us to determine the decay constant by
measuring the half-life.

Lets get a feeling for the numbers involved for one of our classroom isotopes.
Consider 137Cs, which has a half-life of 30 years. To calculate the decay constant, λ,
in units of 1/min we just substitute into the above equation:

λ =
ln2

τ
=

ln2

30years(365days/year)(24hrs/day)(60min/hr)
= 4.4x10−8 1

min
(9)

This means, that if you wait one minute, the probability that a particular radioactive
Cs137 nucleus will decay is only 4.4× 10−8, or 1 out of 23 million. That is about the
same chance as winning the state lottery! If the chance is so small that a nucleus will
decay, then how come we have so many decays in one minute? Our Geiger counter
reads a few thousand counts per minute. The reason is that there are many many
radioactive nuclei in the sample. Although each one has a tiny chance to decay,
there are so many nuclei in the sample that a relative large number actually decay
each minute. To determine how many radioactive nuclei are in the sample, we need
the relationship between activity and the decay constant. This relationship can be
determined as follows:
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The activity, A(t), is the number of decays per unit time, or decays/sec. Consider
measuring for a time ∆t. In terms of the number of radioactive nuclei at time t, N(t),
we have:

A(t) =
N(t)−N(t+∆t)

∆t
(10)

Taking the limit as ∆t goes to zero, gives:

A(t) = −
dN

dt
= −

d(N0e
−λt)

dt
= λN(t) (11)

This relationship is often written as:

A = λN =
Nln2

τ
(12)

This is a very important relationship, and we will use it in our laboratory ex-
periments. With our knowledge of the half-life of an isotope, we can measure the
activity of a sample and determine the number of radioactive nuclei. For example,
consider 137Cs. For a one microcurie 137Cs sample, the number of radioactive nuclei
can be calculated. One microcurie is an activity of 37,000 decays per second, which
means that A = 37,000 (1/sec). We need to express the half-life, which is 30 years, in
seconds. τ = (30years)(365days/year)(24hrs/day)(3600sec/hr) = 9.46× 108 seconds.
To solve for N, we just plug into the above equation:

N =
Aτ

ln2
=

37000(9.46× 108)

ln2
≈ 5× 1013 (13)

This might seem like a large number of nuclei, I wouldn’t mind having this many
pennies. However, compared to the total number of nuclei in the sample, this is a very
small number. The sample contains around 1022 nuclei, close to Avagadro’s number.
We can also determine the number of grams of 137Cs that are in the sample using
Avagadro’s number: m = 137(5× 1013)/(6.02× 1023) = 1.15× 10−8 grams.

The discussion in this section gives us a good physical picture of what is taking
place inside a sample which contains a radioactive isotope. Usually there are a large
number of radioactive nuclei, each with a small chance of decaying per second. Ev-
ery second, a certain number ”win the lottery” and decay to a lower energy state.
Although there are a large number of radioactive nuclei, this number is very small
compared to the total number of nuclei(atoms) in the sample. In biological experi-
ments with radioisotopes, one wants to use the smallest amount of isotope as possible.
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Since it is fairly easy to detect most decays, we can limit the amount we use to a
small value.

On philosophical grounds, it is quite disturbing that there exists a randomness
to nature. The picture we have from quantum mechanics is that we can never know
exactly when a particular nuclei will decay. The best we can do is to calculate the
probability to decay per sec, the decay constant λ. As humans we are not completely
helpless, but being limited to only calculate a ”probability to decay” is disturbing.
There is a famous quote of Einstein which goes ”God does not play dice with the
universe”. However, all experiments of modern physics make us believe the contrary.
When we do the half-life experiment in this class and verify the half-life formula, we
are indirectly verifying the probabilistic nature of radioactive decay. We are watching
nature toss the dice. Perhaps in the future we will have a more satisfying theory of
how nature works.

The relationship between half-life and the decay constant does make sense: τ =
(ln2)/λ. If λ is large, τ is small, and visa-versa. That means that if a decay process
has a high probability to occur, then the half-life will be small. Processes that have a
small probability to occur will have a long half-life. Having an understanding of the
probabilistic nature of the decay helps us determine the statistical uncertainties of our
isotope measurements. In the next section, we examine the statistical uncertainties
in nuclear isotope measurements.

Statistical Uncertainties

When you measure radioactive decay, you usually measure the number of recorded
counts per unit time. If you were to repeat the measurement, you would obtain (most
likely) a different number. This is because the decay process is probabilistic. Since
we understand the statistical nature of the decay, we can estimate the variation in
the number of recorded counts. This variation is called the statistical uncertainty of
a measurement. It is an uncertainty that is well understood.

Consider a measurement that is done for a time period ∆t. Suppose that there
are N radioactive nuclei, and that each one has a probability p to decay in the time
∆t. Since λ is the probability to decay per time, λ∆t is the probability to decay in
the time interval ∆t:

p = λ∆t (14)

The probability q that one of the radioactive nuclei does not decay is then just,
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q = 1− p (15)

If there are N radioactive nuclei, and each one has a probability p to decay, then on
the average there will be pN nuclei that decay in the time ∆t. So the average number
that decay is given by:

n̄ = pN (16)

Note that if p is small, N does not change significantly from one measurement
interval to the next. When we make a measurement of the number of decays, we
don’t always measure the average pN. Since the decay process is probabilistic, we
usually get more or less than the average. To calculate the variability of the number
of particles detected, we consider the function F(n), which represents the probability
that n nuclei decay out of the N radioactive nuclei present in the sample.

F(n) = the probability that n nuclei decay (out of a total of N radioactive
nuclei) in the time interval ∆t.

We would like to know this function FN(n), because then we can calculate how much
it can vary about its average value. FN(n) can be determined from the Binomial
theorem. If p is the probability to decay, and q the probability not to decay, then the
chance that n decays will occur in a particular ordering is pnq(N−n). The number of
orderings that can occur are n choose N. So FN(n) is given by:

FN(n) =
N !

(N − n)!n!
pnqN−n (17)

The sum on the right is just the binomial expansion of (p+q)N , so the
∑n=N

n=0 FN(n) =
(p + q)N . Thus, this sum equals one if p+q = 1 as it should. To find the average
value for n, we need to compute the following sum:

n̄ =
n=N
∑

n=0

nN !

(N − n)!n!
pnqN−n (18)

which should be equal to pN . See Appendix I for a tricky derivation of this relation-
ship: n̄ = pN .

Next, we want to quantify how much our measurements of n will vary. We can
define the standard deviation, σ, or root-mean-square as the average of the squares of
the differences from the average. In terms of our expression for FN(n), the standard
deviation is given by:
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σ2 =
n=N
∑

n=0

(n− n̄)2FN(n) (19)

Substituting our expression for F(n) gives:

σ2 =
n=N
∑

n=0

(n− n̄)2
N !

(N − n)!n!
pnqN−n (20)

After some algebra using the same ”p and q” trick, one obtains that

σ2 = Npq (21)

the standard deviation is the square-root of (Npq). This expression for the standard
deviation,

√
Npq, is an estimate of how much we expect our measurements to vary

about the average value of Np. For radioactive decay, we have a very nice situation,
because p is usually very small. For 137Cs, p was around 4.4× 10−8. Thus, q = 1− p
is very very close to one! So our formula for the standard deviation is σ ≈

√
pN .

This is actually a very good approximation. However, Np is just the average number
of counts, n̄ , so we are left with the simple formula for the standard deviation of our
measurements:

σ ≈
√
n̄ (22)

WoW!! This is a very important result, and we will use it in our laboratory ex-
periments. It states that the standard deviation of our measurements is just the
square-root of the average number of counts. We don’t need to know N or p, so
long as p << 1. We will use this result two different ways in our laboratory class:
1) to check if our detector is operating properly, and 2) to estimate the statistical
uncertainty in our measurements.

1. Checking if a detector is operating properly
If one takes successive measurements with a properly operating detector, the standard
deviation of the values recorded should be the square-root of the average of the values.
For example, if one takes M one minute readings of a radioactive sample. Let the
number of particles detected be ni for the i’th measurement. For these M values, one
can calculate the average value of the ni:

n̄exp =

∑M
i=1 ni

M
(23)
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One can also calculate the experimental value of the standard deviation:

σexp =

√

∑M
i=1(n− ni)2

M − 1
(24)

If the detector is operating properly, then σexp should be approximately the square-
root of n̄exp . How close is close enough? One can define a ”reliability factor” R:

R =
σexp√
n̄exp

(25)

If the detector is operating properly, then R should be close to one. From a
statistical analysis, it can be shown that

Value of R Probability
0.82 < R < 1.18 80 % of the time
0.78 < R < 1.21 90 % of the time
0.70 < R < 1.30 98 % of the time

If we obtain a value for R that is less than 0.7 or greater than 1.3, then most likely
our detector is not working properly. It is interesting to note that R cannot be too
small. You might think that your detector is really good if the readings are all close
to each other every time you take a measurement. This line of reasoning is false. The
measurements must have a standard deviation equal to the square-root of the average
value.

2. Estimating statistical uncertainties of the counts recorded
In a radiation ”counting” measurement, one does not repeat the measurement

many times to get an average and an uncertainty. Instead, one makes one mea-
surement and assumes that the amount of radiation detected is approximately the
average value that one would get by averaging over many measurements. This being
the case, then the standard deviation is given by the square-root of the number of
counts recorded. That is, if one measurement is taken and n counts are recorded by
the detector, then the uncertainty in this measurement is the square-root of n:

Counts Recorded = n±
√
n (26)

The above result is extremely important, and we will use it in our laboratory experi-
ments. If we record n total counts in an experiment, then we know that the statistical
uncertainty is the square-root of n. The square-root of n is referred to as the statis-
tical uncertainty. It is not an uncertainty, or error, due to the poor quality of our
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detector. It is an uncertainty due to the statistical nature of the decay process. There
is nothing we can do to reduce this uncertainty. It is very important to realize that
n stands for the total number of counts recorded, and is not the number recorded
per unit time. In the above equation, n is unitless!. Only take the square-root of a
unitless number. Some examples may clarify the significance of statistical uncertainty.

Suppose we collect data for 10 minutes and record 102 counts. Then the statistical
uncertainty of our measurement is

√
102 = 10.1. We would express our measurement

for the 10 minutes as 102 ± 10 counts, since we want to keep the correct number of
significant figures. If we want to express our measurement in terms of counts/min,
we have (102± 10)/10 min, which is equal to 10.2± 1.0 counts/min.

Suppose now we do the same measurement, but collect data for 20 minutes. Sup-
pose we record a total of 195 counts. Now, our uncertainty is

√
195 = 14 to two sig-

nificant figures. For this 20 minute measurement, the number of counts we recorded
is 195± 14 counts. In terms of counts per minute, we have (195± 14)/20 min, which
is equal to 9.75± 0.70 counts/min. Now, if we compare with our measurement for 10
minutes, we see that our total uncertainty is greater, 14 > 10, since the total number
of counts recorded is greater.. However, the uncertainty in terms of counts/min is
less with the 20 minute count, 0.7 < 1.0. By recording counts for a longer period
of time we can reduce the fractional statistical uncertainty. The fractional statistical
uncertainty is easy to calculate, since we know the uncertainty is the square root of
the total number of counts n:

fractional statistical error =

√
n

n
=

1√
n

(27)

The above formula is very useful in determining how long we need to run our
counting equipment. For example, suppose we want to know the counting rate to an
accuracy of 5%. For the statistical error to be this small, we must have , or n = 400
counts. If our counting rate is approximately 40 counts/min, we must record data for
at least 10 minutes to reduce the statistical uncertainty to under 5%.

Many of the basic ideas for our experimental work were discussed in this chapter:
the half-life formula, the relationship between half-life and the decay constant and
their relationship to the number of radioactive nuclei. The formula for the statistical
error is very important and will be used extensively in the laboratory. The formulas
all derive from the probabilistic nature of radioactive decay.
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Appendix I: A Derivation of n̄ = pN

In this appendix we derive the simple formula for the average number of counts,
n̄. The average number of counts is given by:

n̄ =
n=N
∑

n=0

nN !

(N − n)!n!
pnqN−n (28)

Consider the right side of the equation. The sum depends on N , p, and q. N
is always independent of p and q. Let’s suppose that the variables p and q are
independent of each other. Then the right side of the equation can be written as

n=N
∑

n=0

nN !

(N − n)!n!
pnqN−n =

n=N
∑

n=0

p
∂

∂p

N !

(N − n)!n!
pnqN−n (29)

Since the variable p is not being summed over, we can bring p and its derivative out
of the sum:

n=N
∑

n=0

nN !

(N − n)!n!
pnqN−n = p

∂

∂p

n=N
∑

n=0

N !

(N − n)!n!
pnqN−n

= p
∂

∂p
(p+ q)N

= pN(p+ q)N−1

The equality above is true for any p, q and N . In our case, p+ q = 1 and we have

n̄ =
n=N
∑

n=0

nN !

(N − n)!n!
pnqN−n

= p
∂

∂p

n=N
∑

n=0

N !

(N − n)!n!
pnqN−n

= pN(p+ q)N−1

= pN

Appendix II: Geiger Counter Time Series

If time permits, we will measure the times between successive recordings of the
Geiger Counter. The times appear to be random, and if one were to check for ran-
domness, one would find that they are truly random. We will make a frequency plot
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(or histogram) of these times. We can determine the functional form of the frequency
plot as follows:

Suppose each radioactive nucleus has a certain probability to decay per
unit time. This probability does not depend on how long the nucleus has been in
its excited state (i.e. radioactive).

As before, we denote the probability to decay per unit time by the symbol λ, the
decay constant of the decay. λ has units of 1/time, and you will see that it only
has meaning in the limit as the time goes to zero. The probability that a particular
nucleus will decay in the time interval δ is λδ in the limit as δ → 0. Our radioactive
sample has a large number of radioactive nuclei, N0. The probability that one nucleus
will decay in the time interval δ is N0λδ in the limit as δ → 0. If the efficiency of our
detector is ǫ, then the probability that our Geiger Counter tube will detect a particle
in the time interval δ is ǫN0λδ, in the limit as δ → 0. For convenience we define
A ≡ ǫN0λ. Thus, if the decay process is probabilistic, the probability that our Geiger
Counter tube will detect a particle in the time interval δ is Aδ, in the limit as δ → 0.

Now consider our experiment. Since N0 is very large, it hardly changes during our
experiment. So A is essentially the same for every recording. We can ask the following
question: What is the probability Pnot that we will not record a count within a time t
since the last count was recorded? This can be answered as follows. Divide the time
t into M equal segments, each of duration δ. That is δ = t/M . Then Pnot is given by

Pnot = (1− Aδ)M (30)

Now we need to take the limit as δ → 0, or as M → ∞:

Pnot = lim
M→∞

(1−
At

M
)M (31)

This limit is the exponential to the base e:

Pnot = e−At (32)

In our histogram, we have binned the data in intervals of ∆t. The probability that
the Geiger counter will receive a signal between the time t and t+∆t is therefore:

P (t)∆t ≈ e−AtA∆t (33)
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We have used the approximation sign, since A is only defined in the limit as δ → 0
and ∆t is a finite time. If we collect a total of Ctot data points, then the number of
counts recorded between time t and t+∆t is just

C(t) ≈ CtotAe
−At∆t (34)

As Ctot → ∞ and ∆t → 0 the approximation gets better. If C(t) is an exponential
function, then your data are consistent with the probability hypothesis. Maybe God
does play dice with the universe?

12


