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The relation between the K -  - P scattering length and the X-ray spectrum for the 2p ~ 1 s 
electromagnetic transition in K - - P  atoms is examined. A coupled-channel potential 
model is used to explicitly calculate the energy of the S-matrix pole in the 1 s channel, 
which is then compared with the energy obtained from the scattering lengths via the 
standard equation. The X-ray spectrum is calculated and compared with the Lorentzian 
shape associated with the complex energy of the S-matrix pole. In addition, the K - p  
branching ratios are compared at threshold and at the complex S-matrix pole energy. 
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I. Introduction 

There are two ways of determining the K - - P  scat- 
tering length: by an analysis of the low energy K -  - P 
scattering data and from the shift and width of the 
ls  K - -P  atomic level. The values obtained by these 
methods differ dramatically. A recent analysis of the 
low energy data by Martin [1] which satisfies disper- 
sion relation constraints gives values of a0 = ( - 1 . 7 0  
+0.680 fm and a1=(0.37+0.60i)fm for the isospin 
0 and 1 K - N  scattering lengths. Using these values 
in (1) below, which relates the scattering length to 
the atomic level shift, e, and width, F, one obtains 

F 
a value of e--i 7 equal to +407--263ieV. Other 

analyses [2] of the scattering data give similar results: 
the atomic level shift e should be positive and between 
200-400  eV. The K - -P  system is complicated by 
the presence of a resonance, A(1405), close to the 
K - - P  threshold energy, and the scattering data 
analyses include this feature. However, the existing 
experimental data for the K -  - -P atom show a nega- 
tive 1 s energy level shift. Three measurements have 
been performed with values for (e, F) in eV of 
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(--40 + 60, 0 +~30)[3],  (--270 + 8 0 , -  560+_260) [4], 

+ 200\ 
and - 1 9 0 + 6 0 ,  80_80 ) [5]. This discrepancy has 

been discussed with respect to the nature of the 
A(1405) resonance [6] and, also, the possibility of 
an anomalously large Coulomb effect [7]. These sug- 
gestions, however, are unable to clearly reconcile the 
problem [8, 9]. In  this paper we examine the range 
of validity of (1) when a bound state resonance is 
near threshold, and estimate how much the X-ray 
spectrum is shifted from this energy. 

The relationship between the scattering length and 
the 1 s atomic level shift, e, and width, F, for the K -  
- -P atom is approximately given by [10] 

F 
e - i ~- = - 412 a c (eV/fm) 

where 

f l+lkol(ao+aO/2 2 2 
ac=~lko] a~a,+(ao+al-~~/2 t-~( 7 + l n ( ~ ) ) }  -1. (1) 

Here B is the Bohr radius, 7 is Euler's constant, and 
ko is the momentum of the virtual K ~  n state. The 
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parameter d is a cutoff radius and taken to be 0.4 fm 
[10]. The scattering lengths ao and al correspond 
to the isospin I = 0 and 1 scattering lengths respective- 
ly assuming [H, I] = 0. The above relationship derives 
from the scattering length approximation when the 
S matrix is analytically continued below the K - - P  
threshold. Isospin breaking and simple Coulomb cor- 
rections are taken into account. The complex energy 

F 
e--i~- is the difference between the s-wave pole of 

the S matrix with ( E p - i 2 ) a n d  without (E~s)the 

hadronic interaction: 

F F 
e - i ~ = (Ep -- E] s) -- i ~-. (2) 

In Sect. 3, we explicitly calculate the pole energy and 
compare the results with the predictions of (1). 

Since the pole energy is complex, it is not what 
is measured in a 2 p - 1  s electromagnetic transition. 
One measures instead an energy spectrum for the 
emitted X-ray, X(E), whose peak value is at an energy 
which we label here as E o. When FIE o is very small, 
the spectrum is almost exactly Lorentzian and can 
be described by two parameters. As the inelasticity 
increases, then the spectrum begins to deviate from 
a pure Lorentzian shape and the peak position can 
shift. Due to the presence of the A(1405) resonance 
near the K - -- P threshold, the 1 s level for this system 
may have a large width. In Sect. 3, we estimate the 
deviations to the center position and Lorentzian 
shape for this system. The determining factor for these 
modifications is the ratio FIE o. As we shall see, when 
F/Eo is as large as 0.1, the energy difference between 
the 2p atomic state, U2p, and Ep can be quite different 
from E o. We treat the problem in a time independent 
manner and assume that the interaction can be repre- 
sented by potentials between the various channels. 
The details of this coupled-channel potential model 
are described in the next section. 

2. The Coupled Channel Calculation 

We carry out the calculation in coordinate space, 
since numerically it is easier to include the Coulomb 
potential in this representation. The effective channels 
are Z + n  -, S~ ~ Z-Tr +, An  ~ K - p ,  K~ and are 
labelled 1-6 respectively. The set of coupled differen- 
tial equations which describes the system is given by 

k2(E) ~ =  - V  2 ~ + 2 # ,  ~ V~j ~ +  V~oulom b I~/ 
J 

(3) 

where 

k~(E)=(E2--(m~ +mi)2)(E 2 -- (ms i _ Mm) i 2  )/4 E 2 

and the reduced energy of the meson-baryon system 
is 

1/m'2 + kt 
#i(E)- [//m~ + k 2 + ~ k 2 

Here, the baryon and meson masses are labeled m~ 
and m~m respectively for channel i. Limiting the analy- 
sis to s-wave and defining u i as r ~i, Eq. (3) becomes 

d 2 u i 
k/2 ui = -~-~-r2 + 2#i(E) Z VO ui + V~oulomb Ui. (4) 

J 

V~ou~omb is a point Coulomb potential for the Z-n 
charged channels and is taken to be the potential 
of a uniformly charged sphere of radius .8 fm for the 
K - - P  system. Results are insensitive to the choice 
of this radius. We are interested in two calculations, 
each requiring different sets of boundary conditions. 
First, we evaluate the pole of the S matrix. In the 
second calculation, the matrix element for the electro- 
magnetic transition from the 2p to the l s level is 
evaluated as a function of energy. 

For determining the pole of the scattering matrix 
F 

we search for the energy E p - i ~ -  for which ui(0) van- 

ishes and u(r) has the asymptotic forms for large r 
o f  e ikir for the uncharged channels and the corre- 
sponding Coulomb functions for the charged ones. 
For channels 5 and 6, which are below threshold, 
ira(k) is greater than zero and the wave function goes 
to zero for large r. For channels 1-4, which are scat- 
tering states, im k is negative and ui(r) diverges for 
large r. These coordinate space boundary conditions 
quantize the complex energies, whose 1 s value is given 
approximately by (1) if the effective range expansion 
is valid and simple Coulomb corrections suffice. We 
compare this eigenenergy with the predictions of (1) 
in the next section. 

Similar calculations of this type have recently been 
performed by Thaler [11] and Landau and Cheng 
[12] for specific potential models which fit the scatter- 
ing data. Here we examine more specifically the gener- 
al validity of (1). Also, our approach is different in 
some respects. The coupled-channel equations are 
solved in coordinate space, instead of a momentum 
basis. This allows a straightforward inclusion of the 
Coulomb interaction, as well as simpler numerics for 
obtaining an accurate solution. For the local poten- 
tial, all six channels are easily included instead of us- 
ing a complex potential to incorporate the A n chan- 
nel. We are able, therefore, to investigate the K - p  
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threshold branching ratios. In addition, in the present 
work the electromagnetic transition matrix element, 
discussed next, is explicitly calculated. Other correc- 
tions to (1) have also been considered [13], but these 
can be model dependent and are usually small. We 
focus our attention here on the Dalitz-Tuan formula, 
Eq. (1) since it is often referred to, is simple to apply 
and as we shall see is generally accurate. 

Since the process is purely electromagnetic, we as- 
sume that the transition is from one K - - P  state 
to another. The electromagnetic dipole transition rate 
between the 2p and 1 s atomic level is given by: 

4 e  2 
w = 3 ~ c 3  q3 I ( ~ f  Irl ~>1 z (5) 

where q~ is the energy of the emitted X-ray. 
For the K - - - P  atom, the initial wave function 

~'i can be well approximated by the time independent 
2p atomic wave function without hadronic couplings, 
O~p, since the width of this level is very narrow. The 
final state Or, however, is time dependent and can 
have a large width. This state decays via the strong 
interaction into the free S-n and A-n channels. We 
assume that the spatial representation us(E, r) for a 
given real energy E of this 1 s state is a solution of 
(4), and subject to the conditions 

us(E, 0)=0; lim us(E,r)=O; 
r ---~ oo  

and 

(6) 

I [us(E,r)l 2drdE=l ,  
E1 0 

where the limits of integration are broad enough to 
include all contributions of the resonance. The incom- 
ing boundary conditions for the free X n and A n chan- 
nels are not changed with energy. One particular 
choice of these could be for instance an incoming 
wave only in channel i. The outgoing waves of the 
free Src and 27c channels will, of course, depend on 
the energy. Note, us has the units of (distance 
x energy)- 1/2. With this energy dependent wave func- 
tion, one can calculate an energy dependent transition 
rate W(E), such that W(E) dE represents the probabil- 
ity for an X-ray to be emitted between the energy 
E and E + d E :  

4 e 2 
W(E) dE = - q3(e)[(%(E)Jr[ ~2p)l 2 dE 

3 h 4 c  3 
(7) 

where 

q~ (E) = E2 v -- E 

and 

u5 (E, r) 
% (E, r) - - -  

r 

If W(E) does not depend strongly on the free-channel 
incoming boundary conditions, then it is to be com- 
pared with the experimentally observed X-ray spec- 
trum X(E). 

Consider the radial and energy dependence of the 
state us(E, r) defined by the conditions of (6). For 
r greater than the range of the strong interaction R~, 
the channel couplings vanish. In this region the wave 
function u5 (E, r) is proportional to the Wittaker func- 
tion of the second kind which we label here as W2 (E, 
r). For r smaller than R~, the precise nature of us (E, 
r) depends on the wave functions of the free channels, 
u1-4, which in turn depend on their incoming bound- 
ary conditions. However, since R~ is much smaller 
than the Bohr radius B, these interactions modify only 
a small fraction of us(E, r). The matrix element in 
(7) is very insensitive to the values of q~ at these com- 
paratively small distances. The corrections are of 
order (RJB) 3. The incoming boundary conditions es- 
sentially only determine the overall scale of this ma- 
trix element. The absolute magnitude of W(E) is de- 
termined from the normalization requirement in (6). 

The energy dependence of u5(E, r) is governed 
primarily by the pole of the S matrix. Thus, u 5 is 
approximately given by 

N 
ude, r)~ W~(E, ~), (S) 

if the incoming boundary conditions for the free chan- 
nels, on which the overall normalization depends, are 
not changed with energy. For an initial incoming 
wave in channel i, N2 is proportional to the partial 
decay width, F~, of this channel. Thus to a very good 
approximation, the shape of the function W(E) is in- 
dependent of the choice of the incoming boundary 
conditions of the free channels. If Rs would be of 
the same order as B, the function W(E) would depend 
on these boundary conditions, the inelasticity would 
be large and the time-independent approximation 
method employed here would not be valid. For all 
cases considered in this paper, the shape of W(E) did 
not vary more than 1% for different choices of bound- 
ary conditions. 

In the limit of weak coupling, F/Ep is much less 
than 1, and u5 (E, r) is approximately given by 

usk(E, r)~ V~/2rc r~C~(r) (9) 
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Table 1. Comparison of the atomic level shift 
of the S matrix, and from the peak and width 
is a = 500 MeV 

e and width F as calculated from (1), from the pole 
of the transition rate W(E). The range of the potential 

f2/47z ao(fm) al(fm ) Eq. (1) S-matrix Pole W(E) 
(~, r/2) eV (~, r/2) eV (~,/7/2) eV 

0.6 1.51 +0.44i 0.24+0.07i (-344, 95) (-353, 100) (--354, 100) 
0.7 2.23 +1.97i 0.31+0.11i (-515, 314) (--533, 380) (-542, 390) 
0.8 --0.41 +3.6i 0.39+0.18i (--206, 848) (--104, 869) (-157, 870) 
0.82 -0.91 +3.2i 0.40+0.20i ( -  59,845) (+ 41,828) ( -  10,830) 
0.84 --1.20 +2.8i 0.42+0.22i (+ 61, 796) (+ 143, 752) (+ 100, 750) 
0.9 --1.35 + 1.84i 0.46+0.29i (+216, 579) (+244, 526) (+222, 530) 
1.0 - 1.109+ 1.14i 0.53 +0.47i (+198,387) (+199,355) (+189,360) 

where ~],(r) is the normalized time independent Cou- 
lomb 1 s atomic wave function. The transition proba- 
bility W(E) becomes 

2e2 r q~ (E) 
I( %Cslrl ~cp}12 (10) 

W(E)-3ghg c3[(E_Ee)e +F~4 ] 

with the characteristic Lorentzian shape. As the in- 
elasticity increases, W(E) begins to differ from a pure 
Lorentzian centered about Ep. This deviation is 
caused by the phase space factor q~(E), which favors 
larger values of E, and the energy dependence of the 
shape of the wave function. For higher energies, 0r (E, 
r) peaks at larger r, and the transition integral which 
contains the factor r 3 is bigger than for wave functions 
of a lower energy.This latter property favors smaller 
values of E. As shown in Table 1, when F/Ep is of 
the order of 0.1 the maximum of W(E) can be shifted 
significantly from Ep. In the next section we investi- 
gate, for a particular model of the K--N system, the 
importance of these modifications. 

3. Results 

We first consider the validity of (1). For this evalua- 
tion, we choose two alternative potential forms, local 
and non-local, which give qualitative agreement with 
the above threshold scattering data. For the local po- 
tentials, a Yukawa form 

f 2  e - ~ r  
(11) v~j(r) = C~a ~ r 

is used, where the Cij coefficients are determined from 
SU(3) symmetry assuming vector meson exchange be- 
tween the baryon and the pseudoscalar meson octets. 
This same potential is used in Ref. 14. For the non- 
local potentials we choose the simple separable form 

2 (~ (12) 

with the same relative coupling, Cij, between the 
channels. For a given strength f 2  and range a, we 
calculate the scattering lengths and determine the pole 
position from (1). This value is then compared to that 
obtained by solving the coupled channel equations 
for the actual pole using the method of the previous 
section. 

The above potentials give a fair description of the 
low energy scattering data and therefore suffice for 
our purpose of examining the validity of (1). Although 
there are two parameters, the pertinent factor for the 
scattering length is the ratio fz/a. This can be under- 
stood considering the single channel problem for a 
potential of the form ef2 V(ar) where f2  is a dimen- 
sionless strength. Rescaling the momenta in units of 
the range, we have 

d2u #f2 
k ' iu  = dx 2 ~-2 a V(x) (13) 

where x equals ~r and k' equals ks/~. The low energy 
hadronic phase shift has the functional form ao 
= k'A (f2 #/~), and the scattering length is given by 

ki'A(f2~/e) 1 
a =  lira - A(f2#/e) (14) 

k-~O k 

where the function A(f2~/a) depends on the poten- 
tial. For the full coupled channel problem, A will have 
some dependence on the momenta of the other chan- 
nels at the K - - - P  threshold energy, and (14) is only 
approximate. This dependence is not strong, and one 
obtains similar results using a different range and a 

potential strength roughly scaled as f ' 2 = f  za . To 
/ 

get a feeling for the appropriate magnitudes, we note, 
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Fig. 1. Plot of the pole of the S matrix in the complex plane associat- 
ed with the l s  K - - - P  atomic level as a function of hadronic cou- 
pling strength. The numbers  alongside the curve refer to values 
of the potential strength parameter  f2 /4  ~. The range of the potential 
is fixed at ~ = 500 MeV 

that for a range of 800 MeV, roughly the mass of 
a vector meson, a value for f2/47r of 1.34 produced 
a bound state resonance at 1405 MeV with a width 
of 25 MeV. In a simple vector meson exchange model 
of the K -  p amplitude, the corresponding pNN cou- 

tj 2 

pling strength is goNN/(41r)= 0.55 (using gr/gV= 6 and 
gpKK=gp~=/2=3.0), which is comparable with the 
values of 0.25-0.8 listed in Table 9.2 of Ref. 15. Our 
analysis included values of 200-1000 MeV for the 
range parameter c~. 

Results for the local potential with ~=  500 MeV 
are shown in Fig. 1. We chart the movement of the 
pole in the complex plane as a function of the overall 
potential strength fz/4m This locus is easily under- 
stood: The pole starts at the unghifted energy E]s 
for f 2 =  0, and is initially lowered in energy (Re (e)< 0) 
due to the attraction of the strong potential. As f2  
is increased further, greater inelasticity sets in and 
the trail veers downward (larger F). Eventually, an 
unstable quasi-bound state is formed and the pole 
turns back. When this resonance is near threshold 
( f 2 / 4 ~ 0 . 8 2 ) ,  F is maximized and Re(x) starts be- 
coming positive, a consequence related to Levinson's 
Theorem. Continued increase of the potential 
strength lowers the resonance below threshold, the 
inelasticity decreases, and Re(e) becomes more posi- 
tive. This resonance is moved down to 1405 MeV for 
fz/4~ = 0.91. Smaller (larger) values of e will contin- 
uously deform the oval curves to larger (smaller) size. 
Since the pole position is closely related to the scatter- 
ing length, the curves scale roughly in accord with 
(14). Results for the non-local potential are qualita- 
tively similar, so we present here only the local poten- 

tial results. For the non-local potential only three 
channels, similar to those used in Ref. 12, were used. 

In Table 1 a comparison is made between the en- 
ergy level shift and width using the various methods 
discussed in the preceeding section for the local Yuk- 
awa potential with ~=500 MeV. Columns 2 and 3 
list the isospin 0 and 1 scattering lengths correspond- 
ing to the potential strengths f2/4~z in the first col- 
umn. The shift and width determined from (1) and 
the pole energy of the S matrix follow in the next 
two columns. When f2/4~ is between 0.75 and 0.85 
these two energies differ significantly�9 In this range 
of the potential strength, a K - - - P  resonance is 
formed near threshold (see Fig. 1), the effective range 
becomes large, and the approximations used in (1) 
are not valid. The difference between the energy found 
by the formula in (1) and the actual pole energy is 
caused by either a large effective range, as in the case 
considered here, or a large Coulomb correction not 
included in (1). A discussion of anomalous Coulomb 
corrections is given in Ref. 8. 

Our model calculation shows that Eq. (1) is valid 
to within 5% for a resonance far from threshold. Con- 
sider the situation with respect to the A(1405) reso- 
nance just 27 MeV below the K - - - P  threshold. At 
a value of fZ/4~=0.91,  which corresponds to a reso- 
nance at 1405 MeV, the discrepancy between the pole 
energy and (1) is only 10%. The width of the reso- 
nance is related to the range of the potential. The 
value of 500 MeV is somewhat small since it produces 
a width of around 35 MeV for the A(I405), which 
is to be compared to the experimental value of 
25 MeV. Similar calculations using ~=1000 MeV 
(300 MeV) give 3% (16%) difference from the predic- 
tions of (1). Thus, if the A(1405) is a bound state 
then it is probably far enough away from the K -  - P  
threshold energy so that it does not cause any drastic 
modifications of (1). We note that in Ref. 12, for par- 
ticular potential models which reproduce the scatter- 
ing data, similar validity of (1) was found. It has been 
suggested that A(1405) is a composite resonant state 
[6]. If this were the case, a similar check of (1) should 
be done. We have not considered this case here. 

In a recent paper [16], a Coulomb~nuclear inter- 
ference potential term was shown to cause substantial 
deviations from the predictions of (1). Here we esti- 
mated these effects by adding an interference potential 
in the K - p  channel of the form Vcoulomb (r) V 55 (r). The 
inclusion of this additional potential changed our re- 
suits very little, < 1%, since its overall strength is 
approximately 1/139 of Vss. 

It is interesting to note that only a 10% increase 
of f2/4rc to 1.0 gives extremely good agreement with 
the K - - P  at rest branching ratios (see Table 2). In 
addition, for fz/4~ between 0.9 and 1.0 the above 
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Table 2. Comparison of the K - - P  at rest branching ratios 7, Re, and Rx as calculated from the 
residues of the S matrix and from the threshold limit of the cross sections. Two combinations of 
the strength and range are presented 

Experimental 
value 

f2  f z  
4~-= 1 ; ~ = 500 MeV 4 ~ =  1.44; c~ = 800 MeV 

Above Residue Above Residue 
threshold of pole threshold of pole 
limit ls 

Y 
Re 
RN 

2.36 __+0.04 [17] 2.36 2.41 2.34 2.39 
0.664_____0.11 [17] 0.642 0.639 0.649 0.647 
0.184+0.15 [18] 0.22 0.23 0.165 0.169 

10 

9 

8 

.7 

6 

5 

W(E) 
Relative Unifs 

JY 'k 
# ',k 

I i i I i g i i I n I I I I n I ~ I I 

6,0 6.5 7 E (keY) 

Fig. 2. Graph of the transition probability W(E) (solid line) as calcu- 
lated in (67) for c~ = 500 MeV and fz/4 n = 0,82. The dotted line cor- 
responds to a Lorentzian whose position and width are determined 
from the pole of the S matrix 

1.0 

.9 

,8 

3 

.6 

.5 

WIE) 
Relative Units 

/f' 

/ \ 
I i I I I I I I I I i I I I I I I I 

-.5 0 ,S E (keV) 

Fig. 3. Shape comparison of the transition probability W(E) with 
a Lorentzian shape. The solid line represents W(E) and the dotted 
line corresponds to a Lorentzian curve whose peak position and 
width are the same as W(E) 

threshold scattering data are also qualitatively repro- 
duced. These results suggest that this model is reason- 
able, at least with respect to the relative SU(3) derived 
coupling strengths Cij. 

The peak and width of the transition probability, 
W(E), relative to E]s is listed in the last column. This 
energy is to be compared with the complex pole ener- 
gy. The difference between these two values is I0 -15% 
of F for F/Eo~-O.1. In Fig. 2 we compare the shape 
of the photon emission spectrum (solid line) with a 
Lorentzian curve corresponding to the pole energy 
(dashed line) for f z /4~=0 .82 .  Deviations are caused 
by a different peak energy and a different shape. For  
this case of large inelasticity, the difference can be 
substantial. Particularly if ~ is small, these corrections 
need to be considered for determining ~ reliably. 

To get a feeling for the actual deviation of the 
spectrum from a pure Lorentzian, we have superim- 
posed in Fig. 3 a Lorentzian shape of the same width 
and peak position as W(E). The difference in shape 

is quite small except in the far tail region as seen 
in the figure. 

As a side calculation, we compute the K - - P  at 
rest branching ratios at threshold and at the pole 
energy. These are defined as 

K - p ~ , ~ - r c  + 
Y - - K - p ~  X+ rc- , 

K -  p ~ Charged Particles 
R r  

K - p ~ All Final States 

K - p ~  rcOA 
RN -- K -  p ---, All Neutral States" (15) 

Since the ratio 7 can have a strong energy dependence, 
these values might have a significant variation even 
over this small energy range. The results are listed 
in Table 2 for range parameters c~ of 500 MeV and 
800 MeV. The threshold results were calculated by 
taking the limit of k5 going to zero for the above 
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threshold K - P  scattering cross sections including 
the Coulomb interaction in the K - - P  channel, al- 
though neglecting this interaction had little effect on 
these ratios. The pole energy values were obtained 
by calculating the residues of the S matrix at the pole 
energy, and multiplying by the appropriate phase 
space factors. From the table it is seen that the differ- 
ence is 3 %. 

4. Summary 

A model calculation was preformed to assess the va- 
lidity of the relationship between the K -  - P  scatter- 
ing length and the X-ray spectrum of the 2 p - l s  
atomic transition. Since the K -  -- P system has a reso- 
nance, A (1405), near threshold, possible modifications 
of the standard relationship, Eq. (1), might be re- 
quired. However, for combinations of the potential 
parameters which lead to a bound state resonance 
at 1405 MeV and reproduce widths comparable to 
the experimental values, only small modifications are 
found. The difference between the real part of the 
pole energy of the S-matrix and the peak of the X-ray 
spectrum also turned out to be small. Significant de- 
viations result only when FIE o is of the order 0.1. 
In addition, this model was able to reproduce the 
experimental K -  --P at rest branching ratios. 

Thus for values of the potential parameters which 
reproduce approximately the experimental results 
with a bound state for the A(1405) resonance, the 
relation between the scattering length and the peak 
and width of the X-ray spectrum is accurate at least 
to the order of 10%. Although a specific model has 
been used, the results with respect to the validity of 
(1) are expected to be qualitatively general. These 
modifications fail to resolve the disagreement of the 
K -  - P  scattering length as determined from the cur- 
rent low energy scattering data analysis and from the 
present K -  - P  atomic level shift data. 

The author would like to thank M. Schaden, M. Kohno, W. Weise, 
W. Kaufmann and W. Gibbs for many useful discussions and com- 
ments on this work. 
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