As abonus, Mr. Fujii included a sketch of the encounter,
confirming our claims that the published photograph had
been reversed and that the tree in the foreground is a co-
conut palm.

IV. CONCLUSIONS

Using an eclipse map and some careful thought, we have
deduced the conditions under which a widely circulated
photograph was made. More important, what began as a

simple and entertaining exercise in elementary analysis has
become an even better lesson in caution and persistence.

'"Timothy Ferris, Spaceshots (Pantheon, New York, 1984), photograph
No. 45 and p. 131. Photograph used with permission of Akira Fujii.
?Eclipse map reproduced from U. S. Naval Observatory Circular No.
158, “Total solar eclipse of 16 February 1980.” An excellent article
concerning the eclipse is “Next February’s total solar eclipse,” Sky Tele-
scope 58, 4-5 [1979].

*See, for example, the Gallery Section of Sky Telescope 76, 103-105
(1988).

*Observer’s Handbook, edited by Roy L. Bishop (Royal Astronomical
Society of Canada, Toronto, 1988), p. 61.
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In introductory quantum mechanics courses, square-
well and step-function potentials are used in the Schro-
dinger equation to investigate properties of quantum me-
chanical systems, since they are simple enough for analytic
solutions. Physical systems for which these closed-form so-
lutions are applicable are excellent classroom examples. In
this note, we present such a system: a Lambda particle
bound inside a nucleus (Lambda-hypernuclei).

The available data on Lambda-hypernuclei come from
strangeness-changing scattering experiments in which a
neutron or proton in the nucleus is converted to a lambda
particle. In practice, these reactions are observed when an
incoming pion (or kaon) strikes the nucleus and a kaon (or
pion) emerges as the outgoing scattered particle. By exam-
ining the kinematics of these reactions, the binding energy
of the lambda particle in the nucleus can be measured, and
from the angular distribution of the scattered kaon (or
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Fig. 1. Binding energies of various hypernuclei are plotted. The =0,
/=1, and [ = 2 values signify the lambda-(core nucleus) orbital angular
momentum. The dotted lines are the results of using a square-well poten-
tial with a depth of ¥, = 27.4 MeV, and a radius of ¢ = r,d '/*, where
7o = 1.08 fm.
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pion), the orbital angular momentum of the lambda with
respect to the nuclear core can be determined as well. A
summary of the most recent data and experimental tech-
niques are given in Ref. 1. These include lambda particle
binding energies for nuclei ranging from '>*Cto **Y, and for
lambda-(nuclear core) orbital angular momentum /=0,
I=1,and /=2 (see Fig. 1).

A standard approach to calculate the binding energies is
to assume that the lambda moves in a mean-field potential
due to the remaining neutrons and protons in the nucleus
(i.e., the core).>™ This mean-field potential is inserted in
the Schrodinger equation, and the resulting energy eigen-
values are compared with the experimental lambda binding
energies. A commonly used ansatz for the nuclear mean-
field is a Woods—Saxon potential:
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Fig. 2. A Woods-Saxon and a square-well potential are compared. Both
potentials have the same strength, 27 MeV, and the same *‘radius param-
eter” ¢, 3.3 fm, which are appropriate values for *Si. The Woods-Saxon
potential has a diffusivity parameter @ of 0.6 fm.

Notes and Discussions 1016



3 T T T
U~
Vo
\ (-\\ \\
.
\\\\ \\\\
| \ o\ i
29 N,
28| _
%
A
-]
>
7l 4
) \
TotaL X% NN
2 \\ "~ \
10/ 11 L R — N \
AN \.
2
" TOTALX?228 ————— ~_ ]
25 : L 1 )
0.5 10 105 14 115

roffm)

Fig. 3. Constant total chi-square ovals are plotted in the plane of the
parameters r, and ¥, The total chi-square is defined as the sum over the
15 data points of

x2=2(

(Binding energy),sry — (Binding energy).,, )2

Experimental uncertainty

Viry= — Vo/{1 + exp[(r—c)/al}.

An excellent match to the data is obtained using V, = 26
MeV, c=1.1 43 fm, and a = 0.6 fm. Good fits to older
data have also been obtained (see Ref. 4) using a three-
dimensional square well. As we show below, the square-
well potential fits the newer data as well. This is not surpris-
ing, since the shape of the Woods—Saxon potential is very
similar to the three-dimensional square well. In fact, the
Woods—-Saxon potential approaches a square-well poten-
tial of radius c as the diffusivity parameter a approaches
zero (see Fig. 2). Although not able to reproduce the bind-
ing energies to a high precision, the square well is easily
solvable and thus has excellent application for the class-
room. Its success is due to the properties of the lambda
particle: It is chargeless, the nuclear spin—orbit interaction
for the lambda is very small, and since there is only one
lambda formed in the nucleus the Pauli exclusion principle
does not apply.

The square-well potential is solved as an example in
many undergraduate texts.> The /= 0,/=1,and / = 2 en-
ergy levels, for example, are found to be solutions of the
equations:
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ecote= —1, forl=0,

t 1 1 1
co e__2=_+__2,
€ € 7

and

e (1 3+ )
L)

The parameters € and % are defined to be

e=\2m,(Vo,— |E)/# ¢ and n=\2m,|E|/# ¢

where — ¥ is the potential strength and c is the radius of
the square well.

Choosing ¢ = r,4 /3, there are two parameters in the
model, r, and V. For simplicity, we take the mass of the
lambda m, tobeits rest mass, 1115.6 MeV. An excellent fit
to the data is found when V, = 27.4 MeV and r, = 1.08 fm.
These results are plotted along with the data in Fig. 1.
Here, the binding energies are graphed as a function of
A 723 for comparison with Ref. 2. As can be seen, this
simple model fits the data reasonably well. We also display
the sensitivity to ¥, and r, in Fig. 3, where we have drawn
constant chi-square ovals in the r~V,, plane.

In conclusion, we point out that the three-dimensional
square-well potential is a satisfactory model for describing
the available lambda-hypernuclear data. This system is an
excellent classroom example, since its solution can be treat-
ed at the undergraduate level. In addition to familiarizing
the student with nuclear-size units, the success of the mod-
el demonstrates that

(a) Therelation ¢ « 4 '/? is verified, as well as setting the
length scale of the nucleus;

(b) The lambda-nucleon force is short range;

(c) The lambda-nucleus mean-field potential is smaller
than the nucleon—nucleus mean-field potential;

(d) The lambda-nuclear spin-orbit force is small.

We now have a physical system rich in pedagogical appli-
cation, for which a simple square-well potential can be ap-
plied.

forl=1,

for/=2.

* This work was done to satisfy the requirement for the completion of the
Bachelor of Science Degree.

'R. Chrien, “Studies of hypernuclei by associated production,” Nucl.
Phys. A 478, 705-712 (1988).

2See D. J. Millener, C. B. Dover, and A. Gal, “A-nucleus single-particle
potentials,” Phys. Rev. C 38, 2700-2708 (1988) and references therein
for a recent discussion of the theoretical work on this subject.
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“L.E. Porter, “Light A’-hypernuclei and the Lambda-nucleon potential,”
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5L. 1. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968), pp.
83-88.
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