equilibrium: Zinc in GaAs,” Phys. Rev. 131, 1548-1551 (1963).

%]. Crank, Mathematics of Diffusion (Clarendon, Oxford, 1986).

OE. D. Jones, “Measurement of the diffusion of group III elements into
cadmium sulphide,” Ph.D. thesis, University of Warwick, UK, 1977.

UE D, Jones, ‘“Measurement of the self-diffusion of cadmium into cadmium
sulphide using radiotracer techniques,” J. Phys. Chem Solids 33, 2063
2069 (1972).

12y, Albers, Physical Chemistry of Defects: Physics and Chemistry of II-VI
Compounds, edited by M. Aven and J. S. Prenner (North-Holland, Amster-
dam, 1967).

13W. Van Gool, Principles of Defect Chemistry of Crystalline Solids (Aca-
demic, London, 1966).

“E. D. Jones and H. Mykura, “Diffusion of indium into cadmium sul-
phide,” J. Phys. Chem. Solids 39, 1118 (1978).

Data analysis in the undergraduate nuclear laboratory
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Experiments for introducing data analysis techniques in the undergraduate nuclear laboratory are
presented. In particular, data from gamma spectroscopy using Nal detectors are ideal for teaching
curve fitting and chi-square analysis. An experiment well suited for error analysis is the
measurement of the half-life of a radioisotope, since the uncertainties are primarily statistical and
can be determined by a well-defined procedure. All software used in our experiments was written by
students as special projects. © 1995 American Association of Physics Teachers.

I. INTRODUCTION

Experiments in nuclear physics that can be performed by
undergraduate physics students have been discussed in many
books and articles.!~ These include the statistics of nuclear
decay, measuring alpha, beta, and gamma spectra of radioac-
tive isotopes, and extracting half-lives and other properties of
the decay. The main emphasis in these experiments is on
observing and measuring different nuclear processes. Since
personal computers are now widely available in the labora-
tory, these experiments also provide an ideal opportunity to
introduce curve fitting methods and computer programming
into the curriculum. Nal detectors, which are common in
student laboratories, have very good characteristics for curve
fitting applications: the gamma-ray photopeaks are nearly
perfect Gaussian functions (see Fig. 1). In this article we
discuss some experiments used in our class in which we
instruct the students in chi-square analyses. _

Peak fitting is a fairly standard technique, and there is
commercial software available for the student laboratory®
which will extract relevant information from the data. How-
ever, since curve-fitting algorithms are not complicated, stu-
dents can write a program to do the fitting as a special
project. Besides giving the student the experience of writing
a program to be used in future classes, you can tailor the
program to your own needs, and the students in the labora-
tory class can look at the source code to see how the algo-
rithm is translated into a computer code. Also, when the
student will use commercial software in the future to fit data,
she or he will have a better understanding of how it works. In
our case, the code was written to include a method of deter-
mining the uncertainty of all the fitted parameters and the
area under the photopeak. With a well-defined statistical un-
certainty, chi-square analysis can be properly applied. In our
lab we use a chi-square analysis to determine half-lives,
gamma attenuation coefficients, and uncertainties in these
quantities.
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We will first discuss the curve fitting methods we used,
and describe some experiments in which single and double
peaks are fit. We also discuss how chi-square minimization
techniques can be used to determine the half-life and uncer-
tainty of radioisotopes.

II. CURVE FITTING METHOD

We will limit our discussion to the fitting of gamma pho-
topeaks obtained from a Nal detector. Most of our detectors
consist of a 1-1/2 in. Nal crystal attached to a photomulti-
plier tube, with the signal input into an amplifier. The ampli-
fier output is read by a PC-based MCA card supplied by the
manufacturer.” First the manufacturer’s acquisition software
is used to collect the data. Then the user exits this software to
DOS, and the student written program is run which reads the
data from the computer’s memory. A plot of the counts ver-
sus channel number is displayed, and the student decides
which peak (or peaks) to fit. Standard techniques for fitting
the photopeaks are employed which use a Gaussian function
plus background, with three parameters for the Gaussian and
two for the background. A best fit is found by varying the
five parameters x; ( j=1-5) and minimizing the chi-square
function:

2= xse [ x 0Bl 4 bked(x, x5,0) - C(0) |
X = . s
i \/C(l)
(1)

where C(i) is the number of counts in channel number i, and
bkrd(x,,x5,i) represents the background.

Different functions for the background were tried, and we
found that a good choice was to use a flat plateau before the
peak connected by a straight line to a flat plateau after the
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Fig. 1. Experimental data along with fitted Gaussian plus background for
single and double photopeak fits. (a) The single photopeak fit of *’Cs dem-
onstrates how well the data is fitted by a Gaussian function. (b) The double
photopeak of >’Co is shown along with the individual Gaussian peaks with
the background removed. These common isotopes demonstrate to the stu-
dents the capabilities of curve fitting.

peak. The plateau before the peak ends at x; —2x,, and the
plateau after the peak starts at x;+2x,. The motivation for
this choice is made by noticing that for most of the photope-
aks used in the student laboratory, the spectrum just to the
right and left of the photopeak is flat and of different heights.
Explicitly, the background function was taken to be:

xy if i=x,—-2x,
(x4=x5)(i—x1+2x5)

B 4x, @)
if x,—2x,<i=sx;+2x,.

x5 if i=x+2x,

bkrd(x4,x5,i)= Ya

A graph of this function is shown in Fig. 2. The values of x,
and x5 will depend on the photopeak being fitted, but gener-
ally x5 is very small as in Fig. 1. An exception is the 511 keV
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Background Function
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Fig. 2. A graph of the background function for the photopeak fit. The height
of the plateau before the peak is x, and ends at x; —2x, . The plateau after
the peak has a height of x5 and starts at x; +2x, . A straight line connects the
two plateaus.

photopeak of **Na, where Compton scattering from the 1275
keV peak produces a large plateau, x5, after the 511 keV
peak. Even in this case the background function of Eq. (2)
works extremely well, and excellent fits are found with typi-
cal values of x, being 0.05 and x5 being 0.03 times the peak
height x5.

We investigated two different searches for the best fit, a
grid search and a gradient search, which were written by
students as part of their senior project requirement. The grid
search proved to be the best to use since it is conceptionally
easy for the laboratory students to understand and it runs fast
enough. Using an IBM-compatible 386/25 MHz computer
with a coprocessor requires less than a second for one run
through the five parameters. The grid search method works
well when the order of the search is: x;, x5, x5, X4, X5.

The students designed the programs to have just the right
user friendliness. The five parameters are initially varied
manually by pressing keys to get a close fit to the data. Then
a “search key” is pressed to carry out one run of the grid
search, and an updated value for y” is printed on the screen.
The search key is repeatedly pressed to do more runs of the
grid search until the chi-square function has reached a mini-
mum, xZ;,. This type of interfacing allows the students to
get a feeling for what is happening in the search for the
minimum and is not simply a “black box” which gives an
answer.®

In addition to finding the five parameters for the best fit, it
is very important to estimate their uncertainties. Since our
best-fit values are the result of a search along the X hyper-
surface, there is no simple analytical form for the
uncertainties.” As discussed in Ref, 9, the uncertainties in the
five parameters can be found by examining when the chi-
square function increases by one unit. As each parameter is
varied from its best-fit value, a search is done on the other
four to minimize x°. For example, to find the uncertainty in
the peak center x,, the student changes x; from its minimum
value. Then with this value of x; fixed, a search is done on
the other four parameters until the x* function is minimized.
Varying x; until X increases t0 xZ,+1 will give the statis-
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tical uncertainty of this parameter. To find the uncertainty in
the area under the photopeak, the area is changed from its
value at x2,;,. A search is done on the five parameters, while
keeping the area constant, to minimize the ¥ function. The
same procedure of examining when X’ increases by one unit
will give the statistical uncertainty in the area. The students
can also vary the window of the fit to see how sensitive the
fit is to the background function.

Examples of fitted photopeaks are shown in Fig. 1. In Fig.
1(a), the single peak is the photopeak from '*’Cs. The data
are fit extremely well with a Gaussian function: the x* per
data point is only 1.3 with a peak height of 2055 counts. To
give a rough idea of the uncertainties in such a fit, the peak
center is 515.9+0.1, the standard deviation 19.35*0.07, and
the area 69040%=274 counts. We note that an approximate
measure of the uncertainty of the area, the square root of the
area plus the square root of the background under the peak, is
311 counts. This difference in uncertainties is greater if the
counts under the photopeak are smaller. Figure 1(b) displays
a double photopeak from the common isotope >’Co. After
failing to obtain a fit with a single peak, the students discover
the hidden peak. The y* per data point for this fit is 0.99 with
a peak height of 3055 counts.

II1. SOME LABORATORY EXPERIMENTS
A. Half-life of radioisotopes

One of the most suitable experiments for a chi-square
analysis is the determination of the half-life of a radioiso-
tope. For this analysis we use the %Cu isotope. We make use
of our neutron howitzer’ and the experiment becomes a
group activity with the students standing shifts throughout
the day. The students are given the task of finding the half-
life of ®*Cu and the uncertainty in their measurements. A
pure block of copper is placed near our 2Cf neutron source,
and %Cu is activated to form %*Cu. Since **Cu has a half-life
of around 12 h, the students stand shifts taking a 5 min “live
time” count every hour throughout the day. Over the next
two days more 5 min counts are taken. The data from a
recent laboratory class is listed in Table I. The uncertainty in
the counts under the photopeak was determined by the
Xint+1 method discussed above.

A common classroom method for determining the half-life
of an isotope is to have the students graph the activity versus
time on semilog paper, and then do an unweighted linear
least-square fit to obtain the slope. Many calculators have
this linear regression algorithm built in. A graph of the data
of Table I with a linear fit is shown in Fig. 3. This method is
simple and gives a good estimate for the slope. However it is
only an approximation and is not suited for obtaining the
slope’s uncertainty. This is because the data are related ex-
ponentially, and consequently the errors of the logarithm do
not have statistical significance in a x sense. It is more ap-
propriate to use a chi-square minimization procedure on the
data and its uncertainties, and not on the logarithm of the
data.’ The data of the %*Cu decay are well suited for this
application.

There is discussion in the literature as to the proper chi-
square function to use if the variables are not related linearly
and if both variables have uncertainties.'®'? We follow Ref.
10 and use the chi-square function

n _ ) 2
-3 5. ®
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Table I. Data from *Cu decay. Counts under the 511 keV photopeak, for a
S min count, are listed as a function of the time in hours.

Time Counts under the photopeak
0 16744+169
1 15596156
2 15120=+159
3 14325*156
4 13723£140
5 12788+138
6 12141138
7 11277+141
8 10949+134
9 10174128
25 4317+92
26 4181+89
27 378479
29 345484
30 318477
31 3177+80
32 2910+73
33 276677
34 2598+71
49 1274+62
50 1113+55
where
df \?
&= ( d—;i) (8x:)+ ()%,

and f(x,) is the fitting function. Since we expect an expo-
nential relationship between activity and time,

A(t)y=Age™,

an appropriate chi-square function for exponential decay is

SOA _é A;—Age ™M .
( 0> )'— i ()\&,A,)2+(5A,)2 ( )
10° [
“Cu Half Life
[
=
=
(=]
&)

0 10 20 30 40 50

Time (hours)

Fig. 3. A semilog graph of the ®*Cu decay data of Table I. The slope,
determined by linear regression, gives a half-life of 12.85 h. Except for the
last two points, the error bars are smaller than the dots.
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Fig. 4. Equal x* ovals are plotted in the Ay—(half-life) plane for the ®*Cu
half-life experiment. The point in the middle is x2;,. Points on the inner
oval are the values of Ay and half-life for which the x function is equal to
X+ 1. The outer oval corresponds to x2;,+2. The data used to calculate
the ovals are from Table 1.

In this equation A; corresponds to the experimental counts at
time ¢;, with uncertainties 8A; and &t,, respectively.

As a senior project, one of our students wrote a computer
program to search on the variables Ay and A so as to mini-
mize the chi-square function S.* The starting point of the
search was determined from the simple formula for the linear
least-square fit of the logarithm of the activity versus time.
We found that the best searching procedure was to alternate
between a grid and a gradient search. The complementary
nature of these two methods gave a vary rapid convergence
to the minimum value. After finding the minimum chi-
square, the program plots ovals of anin+ 1 and y2;,+2 in the
Ay—A plane. In Fig. 4 we show the results from the data of
Table I, where we plot the half-life on the x axis. The pro-
gram assists the student in determining the bounds of the

+inT1 oval, and hence the statistical uncertainties of the
parameters Ay and A. It is also instructive for the students to
examine the x* ovals in the parameter space to see the inter-
play of the variables in the fit. As seen in Fig. 4, there is a
weak dependence of 'x” for an increase in the half-life with a
corresponding decrease of A;. This technique provides an
unambiguous method for determining the uncertainty in the
half-life of %Cu. It also introduces the students to chi-square
techniques and the limitations of a linear least-square fit. The
student laboratory data of Table I gave a value of 12.74
#+0.06 h. The linear least-square (linear regression) fit gave a
similar value for the half-life of 12.85 h, but the uncertainty
could not be obtained. Note that the fit using linear regres-
sion falls outside the errors of the x” fit! The value published
in Ref. 13 is 12.701 h.

One of the most common half-life experiments done in the
laboratory is the “Cesium Cow” experiment in which *’Ba
is extracted from '*’Cs. If a neutron source is not available, a
X analysis can also be done with this isotope. The short 2.55
min half-life allows the students to complete the experiment
in one lab period, but the students will have to rush to save
the data for a meaningful analysis. We have done this experi-
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ment counting 30 s of live time every minute. The students
have about 20 s to save the data before counting again. Even
though the counting time is not small compared to the half-
life, the analysis will still be valid if the counting time is the
same for each time interval. This is because the effective
time of the counting rates will be exactly 1 min apart. In
practice, however, there is dead time, and in our case the
“real time” varied from 32 to 31 s during the experiment, so
the effective time of the counts varied slightly from one
minute to the next. Doing the experiment with *Cu elimi-
nates this problem. Curve-fitting the photopeak and doing a
X analysis for the half-life of *’Ba yielded a value of 2.55
#0.05 min in a recent run.

Another option is to do the '*’Ba half-life measurement
with a Geiger counter. In this case, the students can still do a
x* analysis for the half-life. The uncertainty of the counts can
be approximated as the square root of the counts plus the
square root of the background. In a recent experiment we
obtained a half-life of 2.51+0.04 min.

An advantage of the half-life experiments is that the main
uncertainties are statistical, and that these can be estimated
using a well-defined method. There are very few systematic
uncertainties since the sample remains in the same position
relative to the detector throughout the experiment. The un-
certainty in the counting time is perhaps the largest un-
known. This is controlled by the MCA card, and is expected
to be accurate since it is driven by a crystal. Thus, the student
can trace the uncertainties from the fitting of the photopeaks
to the chi-square fit of the exponential decay. This analysis
parallels that done'in many experiments in nuclear and par-
ticle physics, and is one of the few examples in the under-
graduate curriculum where uncertainties can be given statis-
tical significance.

B. Calibratiqn of the MCA

A common éxperiment in the nuclear lab is one in which
the detection system is calibrated. This routine exercise also
offers an opportunity to introduce the students to the diffi-
culties involved in obtaining accurate energies of emitted
gamma rays. The challenge we give the students is the fol-
lowing: determine the energies of the two gamma photo-
peaks of 207Bj, and the uncertainties of 6\6our values. As stan-
dards, they are given *Na, *’Cs, and *°Co.

Using the curve fitting routine, the channel numbers of the
center of the photopeaks are easily determined. The uncer-
tainty of the channel number is obtained by using the anin+ 1
method described above. The channel number of the center
of the photopeak is the most accurate parameter extracted
from the peak fit, and its uncertainty varies from 0.1 for
single peak fits to 0.5 for double peak fits. Even by varying
the window of the fit, the peak center hardly changes. This is
because the photopeak data are so well described by a Gauss-
ian. Sin¢e the peak center can be measured with such accu-
racy, the students can be falsely lead to believe that the en-
ergies for 2/Bi can be determined to 4 significant figures
with the available equipment. However, the detection system
is not exactly linear, and the amplifier gain can vary slightly
in time. These two properties will cause the greatest uncer-
tainty in the determination of the unknown energies.

The students discover the nonlinearity of the detection
system by comparing the channel numbers of the standard
sources with their known energies. For our system, the rela-
tion of the channel number to the gamma energy was linear
to around 5% for energies up to 1.3 MeV. This is demon-
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Table II. Standard sources are compared to test the linearity of the detection
system.

Channel number  Calculated energy (keV)  Energy from Ref. 13 (keV)

22Na 475.7 511 511.003
137Cs 610.2 655.5 661.64
0Co 1062.2 1141 1173.210
22Na 1155.1 1241 12745
©Co 1203.7 . 1293 1332.247

strated in Table II in which we compare our standard sources.
In column 1 we list the channel numbers of the photopeaks
after an offset of 8 has been subtracted. A linear fit is made to
the 511 keV photopeak of 2*Na. Extending this fit out to the
1332 keV photopeak of ®Co results in a prediction which is
3% low. The students can even determine in which part of
the system the nonlinearity is the greatest. By examining the
sum peak in ?Na and accounting for the offset of the MCA,
we find that the channel number for the 511 keV peak is
477.3%0.1, the 1275 keV peak is 1160.0:+0.5, and the sum
peak is 1631.1x1.0. This shows that the amplification of the
photomultiplier tube and amplifier is linear to better than
0.5%, demonstrating the nonlinearity of the system to be
mainly due to the Nal crystal. In determining the unknown
energies, one needs to know the exact relationship between
energy and channel number, E(i), where E is the energy of
the photopeak and i is the channel number. With a limited
number of standard sources available, there will be an uncer-
tainty in determining this relationship.

The slight change in the amplifier gain can be observed by
taking measurements at different times during the laboratory
period. During a recent measurement we let the amplifier
warm up for 30 min, then took a spectrum of 2Na every 20
min for 2 h. The channel numbers of both the 511 and the
1275 keV peaks slowly increased in time. For the 511 keV
peak, the increase was approximately one channel number
per hour, and for the 1275 keV peak roughly two channel
numbers per hour. To reduce the effects of the variation in
amplifier gain, we have the students take data with two
sources at the same time. The energy of the lower peak of
207Bj lies between the 511 keV *Na feak and the ¥'Cs gho-
topeak. Thus a spectrum with **Na+2""Bi, with }*"Cs+2'B
and with *’Cs+2?Na will allow one to reduce the effects of
amplifier instabilities.

Interpolation between the standard energies is another
source of uncertainty, since E(i) is not exactly linear. As-
suming E(i) is a smooth function whose derivatives do not
change sign between the two standards, the students can
bracket the energy of the unknown by using a linear relation-
ship with the lower energy, and then with the higher energy.
They can also try a linear plus quadratic fit, and a line be-
tween the lower and higher energy standard can be used as
well. We find that with our equipment and the standards
given, an uncertainty of around 0.3% of the unknown energy
can be obtained. A typical result for the two energies of the
photopeaks of *’Bi were 568+2 keV and 1063+2 keV,
which agree with published values.?®

The purpose of this exercise is to instruct the students in
some of the difficulties involved in measuring photopeak en-
ergies and obtaining accurate standards. To this extent, inex-
pensive Nal detectors can be used. It is important to point
out that in order to calibrate the detection system accurately
and recognize its limitations, one needs to know the uncer-
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tainties in determining the center of the photopeaks. Using
the x2;,+1 method, we were able to build this feature into
our software. We note that the uncertainty of the peak center
is not always available with commercial software.

C. Other experiments

There are other experiments in the nuclear laboratory
which offer an opportunity to introduce data analysis tech-
niques. A common experiment is to determine gamma-ray
attenuation coefficients by measuring how the gamma-ray
intensity is reduced due to varying amounts of absorbing
material. Curve fitting and the chi-square function of Eq. (4)
can be used in this experiment in exactly the same way the
half-life of ®*Cu was determined in the previous section. By
curve fitting the photopeak, the total counts and its uncer-
tainty can be determined. Since the intensity falls off expo-
nentially with absorber thickness, the chi-square analysis can
be used to determine the attenuation coefficient and its un-
certainty. However, there are more systematic errors in this
experiment than in the %*Cu experiment, and the final uncer-
tainty is not mainly statistical as in the half-life experiment.

Measuring the efficiency of the detector as a function of
energy and its uncertainty is another useful student exercise.
In our lab the students use the sources >'Co, *'Cs, **Mn, and
%Co as calibration standards to measure the detector effi-
ciency for the photopeak energies of these standards for a
fixed geometry. The uncertainty of the efficiency is largely a
result of the uncertainty of the activity of the source. The
students are then given the isotope ?Na and asked to deter-
mine the relative probabilities for the isotope to decay via
position emission versus electron conversion. Measuring the
counts under the 511 and 1275 keV photopeaks and using
their results regarding the detector efficiency, they can deter-
mine the branching ratio and its uncertainty. Since there is a
large uncertainty in the detector efficiency, the students gen-
erally are only able to obtain a lower limit for this branching
ratio.

Applying a chi-square error analysis in every experiment
in the laboratory course is not necessary. One or two experi-
ments per semester give the student enough instruction in
data analysis without distracting from the physics. We have
used it in the Compton scattering experiment and in alpha
and beta szgectroscopy. The energy of the conversion elec-
trons for “"’Bi also offers a nice example where we have
used the double peak fit to separate out the L and M electron
energies.’

IV. CONCLUSIONS

We have described some experiments in which data analy-
sis techniques can be introduced in the undergraduate nuclear
laboratory class. Generally, experiments in the nuclear lab
are geared toward physics principles. However, since the
data are often of statistical nature, it offers an ideal opportu-
nity to introduce analysis techniques in some of the experi-
ments. In addition, the students have an opportunity to write
the analysis programs themselves as special projects. Al-
though commercial software is available which perform
these tasks, the programs are simple enough to be written by
students. In our case, two computer programs were devel-
oped by students as senior projects to assist in the analysis.
One program is designed to fit peaks with a Gaussian plus a
background function. The second program performs a chi-
square minimization for a two-parameter fit to data which are
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related either linearly or exponentially. Both programs allow
the user to easily determine the uncertainties in the fitted
parameters. A measurement of the half-life of **Cu is an
excellent student exercise. It is one of the few undergraduate
experiments in which all the uncertainties are easily deter-
mined by statistical methods.
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Cyclotron analog applied to the measurement of rolling friction

lan Edmonds, Nicholas Giannakis, and Chris Henderson
School of Physics, Queensland University of Technology, P.O. Box 2434, Brisbane, Australia, Q 4000

(Received 7 February 1994; accepted 14 July 1994)

A simple and inexpensive analog of the cyclotron, ideal for demonstrating the concept of the
cyclotron to large classes, is presented. A metal ball, constrained by a centrally directed spring force
to follow a circular path over a plane surface, is accelerated by an alternating gravitational force
provided manually. A simple method of recording the orbital radius of the ball in the analog provides
a sensitive method of measuring the velocity dependent rolling friction force, F=a + bv. Values of
a and b for rough and smooth wood surfaces are found and the mechanism by which the losses
associated with rolling friction arise is discussed. © 1995 American Association of Physics

Teachers.

L. INTRODUCTION

The cyclotron, developed in the 1930s in the United States
by E. O. Lawrence and M. S. Livingston, is used to acceler-
ate protons to energies sufficient to cause transmutation of
the elements. From this device, for which Lawrence received
a Nobel prize, the synchrocyclotron and the massive present
day accelerators were developed. The concept of the cyclo-
tron, the accumulation of small increments of energy by a
charged particle constrained by a central force to cycle
through an alternating electric field, is one of the more diffi-
cult concepts in the introductory physics course. For this
reason it is desirable to illustrate the concept with an analog
which is simple, visually explanatory, and exciting. Several
analogs have been described. In one form,' a magnetic ana-
log, a long magnet suspended as a pendulum oscillates
through a magnetic field which is reversed manually twice
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per cycle until the pendulum acquires a large amplitude.
While suitable for class demonstrations, the equipment is
elaborate and does not closely simulate the motion of a par-
ticle in a cyclotron. In another form,! a gravitational analog,
a metal ball constrained to move in a spiral cut in a plastic
plate is accelerated through the spiral by mechanically driv-
ing one-half of the plastic plate alternately above and below
the other half at a fixed frequency. While in this apparatus
the particle moves on a spiral path, the analogy to a central
force is not clear and both the scale and the electromechani-
cal nature of this equipment make it unsuitable for demon-
stration to large classes.

The analog described here is a gravitational analog of the
cyclotron in which a metal ball cycles through an alternating
gravitational field while constrained to move in a circular
path of ever increasing radius by a central force provided by
a spring. The simplicity, manual operation, and scale of the
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