Throwing nature’s dice
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A simple experimental setup to produce true random numbers is described. The experiment involves
measuring successive times between decays of a radioactive source. We discuss two different ways
of comparing these times: one that generates a string of random zeros and ones, and another that
produces numbers derivable from the permutation group. It is shown that the methods used in the
experiment produce the same results for any random process and can therefore be used as a test for
randomness in other physical systems. © 1996 American Association of Physics Teachers.

I. INTRODUCTION

Random number generation is of interest in Monte Carlo
calculations, computer simulations, and other applications in
physics. Due to the need of rapid random number produc-
tion, a lot of study has gone into developing computer algo-
rithms for this purpose. The numbers generated by these
computer programs are not truly random, but are referred to
as ‘‘pseudo-random.’’ There has been less effort in develop-
ing true random number generators, since they do not offer
many advantages over pseudo-random numbers in applica-
tions, and they are not as fast as a built-in computer algo-
rithm. We found only a few articles in the literature about
true random number generation, mostly in electronics
journals.l‘3 A common method is to use white electronic
noise, or radioactive decay, to produce a random bit stream.
The signal is sampled by means of flip-flops at equal time
intervals to produce the random bits. These methods have
imperfections which introduce small correlations.! Another
method presented involves detecting the different isotopes of
a gas at equilibrium as the molecules escape through a nar-
row nozzle.> We also discovered a patent from 1969 that
compares voltage measurements of electronic noise to pro-
duce random bits.* These approaches focus on the problem
of producing true random numbers fast using hardware tech-
niques. However from a teaching standpoint, it is interesting
for physics students to consider ways in which truly random
numbers can be generated from physical systems, and con-
versely to test the randomness of these systems.

In designing truly random number generators from physi-
cal processes, one is led to the question: How do we know
which processes in nature are truly random, and how does
one test physical systems for randomness? Microscopic pro-
cesses which follow the laws of quantum mechanics, for ex-
ample, are believed to be truly random. As a system evolves
in time, the theory can only calculate the probabilities of
what will happen. To verify this basic tenet of quantum me-
chanics, experiments are being performed to test the random-
ness of atomic decay.’ The time it takes for an isolated atom
to decay is measured many times in succession. Techniques
from cryptography are used to test for any patterns in the
decay times. At present, no patterns have been seen. In this
article, we discuss a similar experiment, appropriate for the
undergraduate physics laboratory, which can be used to gen-
erate true random numbers as well as to introduce students to
the methods of testing for randomness. We measure the suc-
cessive decay times of a sample of radioactive nuclei. The
data are used in two ways: to generate true random numbers,
and to test the degree to which the quantum mechanical de-
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cay process is truly random. Note that since the sample size
is slowly decreasing in time, the results are not as ‘‘pure’’ as
in the atomic experiment. As discussed in the text, the dif-
ference is calculable and is of the order of 1 part in 102,

Random processes, like chaotic processes, are interdisci-
plinary. We consulted faculty in the computer science and
mathematics departments to determine an appropriate test for
randomness. This helped us come up with a simple test,
which we call the bit test, suited for our applications. We
were then led to apply the bit test to other systems. Here, we
discuss an application from our biology department in which
the time between heartbeats in humans is measured. In this
article we describe different aspects of the experiment and
analysis. We start by explaining the setup for the radioactive
decay experiment in the first section. We then discuss how to
generate truly random numbers and to throw the dice from
the data. This is followed by a section on tests for random-
ness and a description of the bit test. We conclude with ap-
plications of the bit test for pseudo-random number genera-
tors and the time between heartbeats.

II. THE EXPERIMENTAL SETUP

The apparatus is designed to measure the time between
detected radioactive decays. The experimental setup, shown
in Fig. 1, consists of a Geiger counter, an LED emitter—
detector pair, and a computer to collect and analyze the data.
The Geiger counter setup is used to detect the radiation, and
has an output jack for a speaker. In our experiment, we used
a Thornton Decade Counter/Power Supply (DEC-102 and
APS-101), and our source was 1-uCi 137Cs. The speaker out-
put from the Geiger counter is connected directly to the LED
emitter, and the coupled detector is connected directly to a
digital input on the computer. For this connection, one can
use a digital-to-digital input on a data acquisition card, a
game pott, or a serial port.

The time between radioactive decays is measured via soft-
ware and the computer processor clock in the following way.
When a decay is detected in the Geiger counter, a voltage
pulse is sent to the speaker output which is connected to the
LED emitter. The pulse is strong enough to ‘‘light’’ the di-
ode. This signal is then picked up by the detector which is
connected directly to a port in the computer. The status of
the detector is determined by sampling the computer port. A
sample program, written in Pascal, to determine the time
between pulses is shown in Appendix A. The program
records n pulses, and stores the number of times the port is
read while the detector is active in on[i] and inactive in
off[i]. The time between pulse i and i+1 is the sum of on[i]
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Fig. 1. A diagram of the experimental setup. The speaker output of the
Geiger counter is connected directly to the LED infared emitter of an LED-
detector pair. The output of the detector is connected directly to a digital
input port in the computer. In our case it was connected to a digital-to-
digital input on a general purpose acquisition card. The time between pulses
is done by sampling the port via software.

and off[i]. By using software to measure the time between
decays, the hardware problems of Refs. 1 and 2 are elimi-
nated.

This simple setup has a number of virtues. Since most
physics departments have Geiger counters and computers,
the experiment can be set up with little extra expense. The
LED emitter/detector pair cost around $1 and a serial card or
game card runs around $10. The LED emitter/detector pair
allows the computer to be isolated from the Geiger counter,
which eliminates damage to the computer due to large
pulses. This experiment is ideal for implementation as a spe-
cial student project or in a laboratory class on computer
interfacing.®

The advantage of using a digital input is that the port can
be read fast, the speed being determined by the machine and
bus speed. We used an IBM386 compatible with a clock
speed of 20 MHz, and were able to sample the port at
roughly 200 000 counts/s. At this speed the pulse width is
around 80 counts. Placing our '*’Cs source up against the
tube for maximum activity, the number of counts-from the
end of one pulse to the beginning of another averaged around
400. This is 480 counts between pulses, which enabled us to
count roughly 400 pulses/s cleanly. With a more active
source and faster equipment, the speed could of course be
increased.

III. GENERATING RANDOM BITS

A simple way to generate random numbers is to compare
the times between successive pulses from the Geiger counter.
For example, consider measuring the times between three
pulses. Let £, be the time between the first and second pulse,
and ¢, the time between the second and third pulse. The
generated bitisa 0 if ¢;,>¢,,and a 1 if #; <¢,. The two times
are discarded in the rare case that 1,=+¢,. Based on the prin-
ciples of quantum mechanics, radioactive decay is probabi-
listic by nature. The decay constant X is the probability that
one nucleus will decay between time ¢ and ¢+dt. If one is
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observing A radioactive nuclei, the probability that any one
of these will decay between time ¢ and t+dt we label as
P,(t)dt, and is given by

P,(t)=ANe M, (1)

Thus, the probability that ¢, is greater than ¢, is the prod-
uct of P,(t)dt times P,_,(t")dt' integrated over all pos-
sible times ¢ and ¢’ such that ¢’ >¢:

Prob(t2>t1)=f PA(t)f P,_q(t")dt' dt
0 t

=f A)\e"’“"f (A—1)re A~ gy gy
0 t

_ A
=2A-1" @

Here, A is equal to the initial activity measured by the
detector, A, divided by \. Usually this number is very large.
Using our 1-uCi source, Ay was 20 000 counts/min when the
source was up against the detector, and for *’Cs the deca
constant \ is 4.4X107% min~!. So A is of the order 10'%,
which makes the probability to obtain a bit value of one very
close to 1/2, most likely even better than a real coin.

To a very good approximation (one part in 10'%) the prob-
abilities P,(¢) and P, _,(t) are equal. If they were exactly
equal, then the probability of obtaining a one is exactly 1/2,
independent of the probability distribution. This can be seen
as follows. Let P(¢)dt be the probability that a decay will
occur between time ¢ and ¢+dt. Then the probability that
t,>t is

Prob(t2>t1)=f:P(t)JwP(t’)dt’ dt. (3)
Let I(£)=[f;P(t')dt’. Then we have I(0)=1, and P(¢)=

—dI/dt. Therefore, the probability that ¢, is greater than ¢, is

«©

@ di
Prob(t2>t1)=f0 P(t)I(t)dt=J’0 (— E)I(t)dt

I(1)?

2

-]

2 ©)

0

after integrating by parts. This simple result holds for any
P(t). Thus, even if P(¢) is not exactly exponential due to
dead time or other experimental factors,” a ““0>” or a 1"’
will be generated with equal probability. The only effect that
will upset the equal O or 1 probability is if P(¢) varies from
one pulse to another. Such a situation might arise from a
large background that varies rapidly in time. This unlikely
condition can be eliminated by using proper shielding.

The above procedure can be used to simulate a coin toss or
generate a random string of any number of bits. For example
if one wants to produce a random number of N bits, 2N +1
times are recorded. The first time is thrown out since it is not
a complete timing from one pulse to another. This is actually
not necessary for radioactive decay because of the ‘‘good-as-
new”’ postulate.> However, to eliminate any measurement
effects which might modify the ¢‘good-as-new”” postulate we
throw out the first timing. The other 2N times are paired off
to make N pairs. For each pair, the above rule is used to
produce the N random bits: <‘0°” if £;>¢, and ““1°” if £,>¢,.
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Table 1. The outcome of throwing ‘‘nature’s dice’’ 120 000 times in suc-
cession. If the dice are fair, each number should occur 20 000 times on
average with a standard deviation of 129. All numbers are within two stan-
dard deviations, and four of the numbers lie within one standard deviation of
the average. The chi-square per data point is 0.90.

Dice number Occurrances
1 19997
2 19 865
3 20025
4 19930
5 19925
6 20 247

IV. THROWING DICE

Another exercise for the students is to have them consider
the following problem: Determine the most efficient way to
use radioactive decay to simulate the throwing of a dice. The
solution to this problem involves the permutation group and
leads to a method for testing whether a sequence of numbers
is random or not.

A simple way to throw the dice is to measure three con-
secutive times between pulses. Label the three times ¢, ¢£;,
and ¢;. The toss of the dice is determined as follows: If
1 >t>ty a l, if ¢;>6>1, a 2, if t,>1>¢ a 3, if
L,>t>tya4,if t3>1>¢t, a5, and if 1;>¢,>¢, a 6 results.
As discussed in Appendix B each of these time permutations
occurs with equal probability. The results from our radioac-
tive decay experiment are shown in Table I. Here we have
thrown ‘‘nature’s dice’” 120 000 times in succession. For a
purely random process, one should obtain each number
20 000 times on the average, with a standard deviation of
v120 000(1/6)(5/6) = 129 for a binomial distribution. From
Table I we see that two thirds of the numbers are within one
standard deviation of the average. The chi-square per data
point, x*/D, for this experiment is

N;—20 000)?
_=_.2

where N, is the number of occurances for number i. It is not
possible to prove that the probability is 1/6 for each number
or that the process is even truly random. However, the ex-
perimental results suggest that nature is not throwing loaded
dice.

Examining different permutation combinations is a
method for testing if a sequence of pseudo- random numbers
adequately simulates a truly random sequence. ® We would
like to test longer time sequences of the radioactive decay
data; however, the number of permutations grows as N! To
make the analysis simple for larger N we use the “‘bit test,”’
which we describe in the next section. The test is applied to
the radioactive decay data, pseudo-random numbers, and the
time interval between heart beats.

=0.90, 5

V. TESTS FOR RANDOMNESS IN PHYSICAL
SYSTEMS

Techniques from computer science which test pseudo-
random number generators can be used to examine physical
systems for randomness. If pseudo-random numbers are to
be used as random numbers in applications, they need to
satisfy certain properties. A good discussion of these proper-
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Fig. 2. A histogram of the 50 000 seven-bit binary numbers produced from
the 400 000 experimental time measurements between radioactive decays.
As discussed in the text, 50 000 groupings of eight consecutive times are
used to obtain the 7 bit numbers. There are statistical fluctuations from the
expected values of 50 OOO*B , and the histogram is consistent with that
from a truly random process. The XD is 1.21.

ties is given in Chap. 4 of Ref. 9, where a number of tests are
described. Tests referred to as the permutation, gap, run, and
poker tests, examine uniformity and correlations between the
numbers being generated. In addition, other tests'® such as a
return map can be used to spot any pattern in the so-called
random numbers. Some of these tests are applicable to physi-
cal systems. In this section we introduce a test for random-
ness, similar to the permutation and run test, which we call
the bit test.

Consider the following method for generating a string of
N bits from the radioactive decay experiment. First measure
N+1 times between pulses. The ith bit of the string is “‘0’” if
t;>t;,; and ‘17 if t,<t;, . The N-bit number generated is
random, but not with uniform probability (see Fig. 2). For
example, if three times are measured a two bit number
(b1 b,) is generated. Each of the six permutations of the three
times is equally likely. Thus the probability of obtaining 0
(00) is 1/6, of 1 (01) is 1/3, of 2(10) is 1/3, and of 3 (11) is
1/6. We denote the probability that the N-bit number has the
value j as BY. ; - These probabilities are calculated in Appendlx
B, where we also list the results for N=3 and N =4 in Tables
II(a) and II(b). In Fig. 2 we show the results of recording 8
pulse times from the radioactive decay experiment for
50 000 trials. We have binned the 400 000 measurements
into their values between 0 and 127. The interesting property
of these probabilities is that the results are independent of
the probability function P(t).

One application of the above procedure is that it offers a
quick and easy test for randomness which can be applied to
a series of numbers or certain physical processes (see Ap-
pendix B). One takes groups of N+1 independent numbers
(or measurements), and bins the N-bit numbers produced. If
the series is truly random, then the binning will follow the
probabilities listed in Appendix B. After M such bmmngs (of
the N bit numbers), the integers j should occur B; ¥M times
with a standard deviation of \/MBlji(l B]];) A chl-square
test can be performed on the distribution of integers to test
for randomness. We refer to this test as the bit test. This is
not a new test for random numbers, but rather a subtest of the
permutation test described in Ref. 9. In the permutation test,
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Table II. Values of BY for (a) N=3 and (b) N=4. Larger values of N are obtained from a simple computer program (Ref. 17).

i B3+24 j B}*24

0 1 4 3

1 3 5 5

2 5 6 3

3 3 7 1
(b)

j B#+120 j B}*120 j B{*120 j B}*120
0 1 4 9 8 4 12 6
1 4 5 16 9 1 13 9
2 9 6 11 10 16 14 4
3 6 7 4 1 9 15 1

strings of N independent numbers are chosen. These strings
are then examined to see if each of the possible N! permu-
tations occurs with equal probability. In practice this is a
difficult test to carry out if N is large, since the number of
permutations becomes unmanageable. However, instead of
examining the exact permutations, one can generate and bin
the N bit number determined by the above rule. This is a lot
quicker, and although is not as powerful a test as the permu-
tation test, is still a strong test with the same features. Due to
its simplicity larger values of N can quickly be tested for the
permutation quality of their randomness. We demonstrate the
usefulness of this test with an example of a pseudo-random
number generator and physical processes.

A common algorithm for generating pseudo-random num-
bers is the linear congruential generator.'® The 7+ 1th num-
ber generated, x,. , is determined from the previous num-
ber, x,, using the simple formula x,,,=(ax,+b) mod m.
The numbers generated are not truly random, and eventually
the series repeats. For an appropriate bit length and enough
data points, the sequence of numbers will eventually fail the
bit test. For example, we choose a=899, b=0, and
m=32768. The series repeats after about 4000 numbers.!!
For 7 bits (i.e., eight consecutive numbers) the XZ/D is
greater than 2 after 3000 samples. In Fig. 3(a) we graph the
X*/D as a function of the number of strings sampled M.
Since the numbers repeat, the x’/D eventually grows linearly
with M. For comparison, we graph in Fig, 3(b) the x*/D for
6 and 8 bits. In both cases, the linear congruential generator
fail the bit test. However, more trials are needed than with 7
bits. With 6 bits the string is not long enough, and for 8 bits
more trials are needed to obtain enough data points for the y*
analysis. The bit test works best if the probability density
function P(x) is not uniform.

In Fig. 2 we plot a histogram of the seven-bit binary num-
bers produced from 400 000 experimental time measure-
ments between radioactive decays. Here, 50 000 groupings
of eight consecutive times are used to obtain the seven-bit
numbers. The occurrences are close to the expected values of
50 OOO*B; with statistical fluctuations, and the numbers 0,
63, 64, and 127 rarely occur as expected. Note, to obtain the
number 63 (or 64) the last seven times need to be sequen-
tially increasing (or decreasing). The x*/D is 1.21 indicating
the histogram is consistent with that from a truly random
process. This is expected, since one believes that the process
is governed by the laws of quantum mechanics and is a truly
random process. Nonetheless, it is instructive for the students
to observe and test the degree to which nature is random. For
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comparison, a return map of the data can also be plotted to
test for randomness. In a return map, one plots ¢, vs ¢, to
observe any patterns or strange attractors. A plot of a return
map for the times between radioactive decays is shown in
Fig. 4. On its own it is not very interesting. However, this
exercise is a good complement'* for the dripping faucet ex-
periment, where the return map produces a strange attractor

5.0

40

x2/D

1.0

0.0

0 20 40 60 80 100

(b) Number of Strings Sampled (x103 )

Fig. 3. x%D vs the number of strings sampled M for the congruential
random number generator. In (a), the string length is eight numbers produc-
ing a 7-bit number. In (b) the solid curve corresponds to a string length of 7
numbers (6 bits), and the dashed curve to a string length of nine numbers 8
bits).
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Fig. 4. A two-dimensional return map for the time between radioactive
decays is plotted. The times, ¢, , are the time from the end of one pulse to
the start of the next pulse in terms of iteration loops in the computer pro-
gram of Appendix A. Two thousand data points are used in the plot.

indicating that the times between drops are chaotic and not
random.’>* No such pattern is seen in the nondescript blob
of points in Fig. 4. One also sees no pattern in a three-
dimensional return map, but higher dimensions are difficult
to plot. The bit test allows one to examine longer strings of
data points. It shows that for the number of bits (or dimen-
sions) tested the data is random with respect to its permuta-
tion quality.

These methods are also applicable to the data from bio-
logical systems. The time between heart beats, as well as
more sophisticated spectral analysis techniques, are being
used as a diagnostic tool to investigate the condition of one’s
heart. To facilitate the analysis, a return map is often made in
three dimensions of ¢,, ¢,., and t,+,."> In Fig. 5 a return
map using 1400 times from a volunteer is displayed. The
subject is at rest, and the data form a locus of points along
the diagonal ¢,=¢,. {=t,.,. From the return map alone, one
cannot determine if the times are being generated randomly
or not. Results of the bit test for three successive times are
shown in Table III. The time between heartbeats clearly fails
the test, with the ¥*/D being 38. From the table, it is seen
that three consecutive increasing times (j=0) and three con-
secutive decreasing times (j=3) occur far more often than

Fig. 5. A three-dimensional return map is plotted of the time between heart-
beats, ¢, , for a subject at rest. The axes correspond to ¢, , f,41, and ¢,
where n goes from 1 to 1398.
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Table III. Results of the bit test applied to the time between heartbeats. If
the times were truly random, the numbers in column two would be close to
those of column three. There are too many sequentially increasing times
(j=0) and sequentially decreasing time (j=3).

j B}+467 Heart data
0 78 116
1 156 98
2 156 107
3 78 146

the random case (the second column). This is because one’s
heart rate tends to speed up gradually and also slow down
gradually due to breathing, etc. when one is at rest. Note that
in this example both the three-dimensional return map and
the 2-bit test examine three consecutive data points for pat-
terns. The return map is useful in uncovering the functional
dependence of a measurement with the previous two. The bit
test is useful in testing if the sequential ordering of the mea-
surements have the proper qualities for randomness. Using
strings of three times, the bit test easily uncovers the nonran-
dom nature of the time between heartbeats. Perhaps the dis-
tribution of the binary numbers j can assist in determining if
one’s heart is healthy.

VI. SUMMARY

A simple experiment was described in which measure-
ments of the time between radioactive decays enables one to
produce random numbers. Successive times are compared
and a 0 or a 1 is produced depending if £;>¢;,( or £;<<t;,,.
In one case, 2N +1 pulses are recorded, and a random N-bit
number is generated with uniform probability. In another
case, N+1 pulses are recorded, and a random N-bit number
is produced with a probability distribution related to the per-
mutation group. The interesting aspect is that the numbers
generated have the same probability distribution for any ran-
dom process. One can use this fact to test for randomness. A
simple test, called the bit test, was introduced to test the
permutation quality of the randomness of a series of mea-
surements. The radioactive decay process passed the bit test
for randomness for bit lengths up to 7 bits.

These methods are well suited for an undergraduate phys-
ics class. The equipment is found in most physics stock-
rooms, and the project is a good exercise in computer inter-
facing with an experiment. The data analysis introduces the
student to the different mathematical tests for randomness,
the difference between pseudo-random numbers and truly
random numbers, and enables the student to test the degree
to which radioactive decay is random. One could also use the
random numbers that are generated in a Monte Carlo calcu-
lation or other ‘‘random walk’’ applications in a computa-
tional physics class.’® Here, truly random numbers might
work better than pseudo-random ones. However, the most
fascinating aspect of the exercise is to watch the random
numbers appear on the computer screen, and realize that we
are allowing nature to toss the dice.
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APPENDIX A: PASCAL PROGRAM TO READ
DIGITAL PORT

The following is a simple program in Pascal which can be
used to read the digital port and determine the time from one
pulse to the next for eight consecutive pulses.

fori:=1to 8 do

begin

count:=0;

while (port[308]<7) do count:
on[i]:=count;

count:=0;

while (port[308]>7) do count:=count+1;

off[i]: =count;

end;

for i:=1 to 7 do times[i]:=on[i+1]+off[i+1];

bits;

Note that the first pulse reading is discarded, and the last
seven times are stored into the array times[i]. For our acqui-
sition card port 308 was 15 when the emitter was off, and 3
when it was on. It is important that each pulse after the first
one is measured in the same manner. For each cycle after the
first, the computer increments i, samples the port until it is
greater than 7, stores the result in array on, samples the port
until it is less than 7, and stores the result in off. Each cycle
is treated the same. This will insure that P(¢) is the same for
each pulse. It is better to start testing if the emitter is on,
since the pulse width is consistent and about 80 counts wide.
The procedure ‘‘bits’” converts the array times into a 7 bit
number as described in the text.

=count+1;

APPENDIX B: THE BIT TEST

Consider a series of N+1 real numbers (or measurements)
x; . Suppose that each one of these numbers is produced ran-
domly with probability density P(x;) and that the probability
does not depend on when it is produced, P(x;)=P(x) for all
i. That is, the probability that any one of the numbers in the
series lies between x and x+dx is P(x)dx. We will also
assume that x;#x;,; for all i. In practice this is unlikely.
With measurements, one can often increase the resolution of
the measuring device to differentiate between the two num-
bers. Note that x; can be equal to x; for j#i+1.

From the N +1 real numbers (or measurements) an N-bit
binary number is produced as follows. The binary number B
has N bits (b b,bs...by), where the i’th bit b; is zero or
one. The bit b; is zero if x;>x;,; and it is a one if x;<x;, ;.
The number B is between 0 and 2V —1, however the distri-
bution of B is not uniform. For example, it is very rare for B
to be 0. This can only occur if the x; are sequentially de-
creasing, x;>x;, for all i. This happens with a probability
of 1/(N+1)!. The same is true for B being equal to 2Y—1.In
this case, the x; must be sequentially increasing, and the
probability for this to occur is also 1/(N+1)!. We will label
the probability that the N-bit binary number j occurs as BN
We demonstrate this with a simple example of N=2.

Consider the case of N=2, with a series of three real num-
bers xy, x,, and x3. The probability that B=(11)=3 is given
by

= fomp(x) LmP(x’)J‘:P(x”)dx” dx' dx (B1)

This integral is easily solved by defining I(x)= [y P(u)du.
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Note that /(0)=1 and dI/dx=—P(x). One can now inte-
grate by parts:

i 2

o 2
_J P(x)l(x)
0 x

1 J‘°° dI(x)
2 0 dx

I(x Ydx' dx

dx= % f:P(x)lz(x)dx

I

I*(x)dx

with the result independent of P(x). Similar integrals can be
solved to find the probability that B will be 0, 1, or 2. The
integrands will be the same as Eq. (B1), but the limits will
change. The limits will be from x to « as above if x;<x,.
or from 0 to x if x;>x;,. In the latter case, one uses (1
—I(x)) and integrates by parts. For example,

o x © 1
=J P(x)f P(x')j P(x")dx" dx' dx=>.
0 0 x' 3

The other results for the N=2 case are B3=1/6 and B3=1/3,
independent of P(x).

One can generalize the above procedure for any N, since
the integrals can still be solved by integrating by parts. Some
cases are simple: B = BIZVN_1 =1/(N + 1)!,andBY = BIZVI\,_2
= N/(N + 1)!. However, in general, the mathematics can be
cumbersome. There is a simpler way to determine the prob-
ability that the binary number B will result from a series of
random numbers. Consider the case N=2. If the three real
numbers x,, x,, and x5 are truly random and independent of
each other, then they could have been produced in any order
with equal probability. We just happened to measure one
possibility. Thus, for N=2, we have x;>x,>x; giving
B=0, x,>x;>x, giving B=1, x3>x,>x, giving B=1,
Xy>x>x5 giving B=2, x,>x;>x, giving B=2, and
X3>x,>x; giving B=3, with each permutation having an
equal probability of 1/6. However, B=1 and B=2 can occur
in two different ways, so their probabilities are each 1/3. The
same result was found using the integral method.

Examining the (¥+1)! permutations to determine the
number of tlmes the binary numbers occur is an easier way
to obtain B than solving the integrals of Eq. (B1). A simple
computer program17 was written to compute the different
probabilities. In Tables II(b) and II(b) we list results for N=3
and N=4. Note that the B} have some symmetry properties:
They are symmetric about j= (2N /2 1), they are left—right

N N
symmetrlc and B} = B~ where j is the complement of j
N i
(j=2"-1-j).

Since the probabilities Bf’ are the same for all random
processes [i.e., independent of P(x)], one can use this prop-
erty to test for randomness. A simple and easy method is to
perform a chi-square test on the data. For example, suppose
we want to apply the test to strings of N+1. One picks M
independent strings of N+1 data values, and calculates the
N-bit number for each string using the rule given above. Let
N; denote the number of times that the N-bit binary number
j occurs On the average the number j will occur MB times
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with a standard deviation of VMB J]-;(l ~B ]7. ), if the data are
truly random. Thus, the chi-square per data point, x*/D, de-
fined by

2V N2
1 (N,—MBY)
ZDE J J
X'/D= 35 2 MBY(1-BY) B2)

can be used to test for randomness. We refer to this test as
the bit test. If ¥*/D is much greater than 2, then most likely
the numbers in the series are not produced randomly. If,
however, the x*/D is small (<2), one has shown that the
numbers satisfy the permutation quality of randomness. They
might still not be truly random. Note that the string of N+1
data values need not be consecutive, they just need to be
independent. One could, for example, skip some values or
rearrange the order.

For large values of N the bit test becomes unmanageable
since there are 2V values of j. We used N=7 for the radio-
active decay data with no computational problems. As men-
tioned in the text, the bit test is not a new test for random-
ness. It is a subtest of the permutation test. However, it is
much easier to apply than the permutation test, because each
permutation is easil% mapped to an integer. The number of
integers grows as 2", whereas the number of permutations
grows as N!. Although not as powerful as the permutation
test, one can apply it to longer strings to check for the ‘‘per-
mutation quality’” of the numbers in the series.
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A simple apparatus employing a semiconductor diode laser and PIN photodiode has been used to
investigate thermal capillary waves on liquid surfaces. These waves act as a weak, time-varying
diffraction grating for the incident laser light; the diffracted light can be heterodyned with the light
directly reflected from the liquid surface to extract fluid properties (surface tension and viscosity).
In this paper we present a discussion of the phenomenon of surface waves and describe the
construction of an apparatus to observe them. Results of measurements with this apparatus for the
surface tension and viscosity of water with and without oil films and of benzyl alcohol at different
temperatures demonstrate the effectiveness of the technique as well as environmental effects on
liquid properties. This problem provides rich ground for a study of wave and thermal phenomena as
well as an introduction to a variety of experimental techniques. © 1996 American Association of

Physics Teachers.

L INTRODUCTION

When undisturbed, the free surface of a liquid gives an
impression of perfect smoothness. However, due to the ther-
mal energy contained in the myriad of surface (capillary)
wave modes, the surface is perpetually fluctuating on a mi-
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croscopic level (a sort of vertical displacement Brownian
motion), giving the surface a time dependent roughness.
These excited waves can be studied by scattering light from
the surface, and liquid properties such as viscosity and sur-
face tension can be determined with no significant direct
contact with the liquid (compare, for example, Ref. 1). The
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