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We present two examples which use a mean field potential to determine valence electron and
nucleon energy levels in atoms and nuclei, respectively. In atoms, we compute the energy levels of
the alkali elements, and in nuclei the binding energy of valence nucleons in mirror nuclei are
calculated. In both cases, the student can compare the results with experiment and vary the
parameters of the calculation to best fit the data. ©2000 American Association of Physics Teachers.

I. INTRODUCTION

One of the most important courses in an undergraduate
physics student’s education is quantum mechanics. Part of
every quantum course is the development of the Schro¨dinger
equation and an interpretation of its solution. Applications of
the Schro¨dinger equation focus on the scattering and the
bound state problem, both usually handled in coordinate
space. For the bound state problem, potentials which can be
solved analytically are given as examples in most textbooks.
The one- and three-dimensional square well, the harmonic
oscillator, and the Coulomb potential have analytic solutions
and are used to illustrate the fundamentals of energy quanti-
zation in bound systems. The Coulomb potential is particu-
larly important, since the solutions can be compared with
experimental data.

In recent years, the personal computer has entered the
classroom and given students and teachers the ability to ob-
tain accurate numerical solutions to differential equations in
a short time. Thus, in addition to using potentials which have
analytic solutions, the student can insert any reasonably be-
haved potential into the Schro¨dinger equation and solve for
the allowed energies of the system. With this new math-
ematical tool, one can supplement the analytic solutions with
interesting potentials to be solved numerically.

In this article, we present two problems in atomic and
nuclear physics for students in an undergraduate quantum or
computational physics class. In both examples the students
compare the calculations with experimental data. Many ab-
stract ideas are introduced in an undergraduate quantum me-
chanics course, so calculations that can be compared with
experiment are particularly valuable.1 In the first example,
the energy levels of the valence electron in the alkali ele-
ments are computed. The students vary one parameter to best
fit the data. In the second example, the binding energy of
valence nucleons for certain mirror nuclei are calculated. The
potential has a size and strength parameter, which are varied
to fit the data.

We first discuss the numerical method we used to calcu-
late the energy levels, followed by the atomic and nuclear
examples.

II. NUMERICAL SOLUTION OF THE
SCHRÖDINGER EQUATION

Numerical solutions to differential equations are taught in
numerical methods and computational physics courses,2 and
we apply these techniques to solve the Schro¨dinger equation.
In this section we summarize the specific approach that our
students used. We assume that the interaction between the

valence particle and the other particles in the atom or nucleus
can be represented by a mean field potential,V(r ). For the
two cases we consider,V(r ) is spherically symmetric.

The potential,V(r ), is inserted into the time-independent
Schrödinger equation:
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For bound state solutions, the wave functionC and the inte-
gral *C* C dV over all space must be finite. Thus, asr
→`, C must approach zero faster than 1/r . Since the poten-
tial is spherically symmetric, the angular dependence can be
separated from the radial. WritingC5R(r )Ylm(u,f) as a
product of a radial part times a spherical harmonic, the above
equation reduces to
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A further simplification is obtained by writingR(r ) as
u(r )5R(r )/r . The radial part of the Schro¨dinger equation
finally becomes
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For C to be finite,u(0) equals 0, and for bound states,u(r )
goes to zero asr→`.

We solve Eq.~3! numerically by making the radial coor-
dinate discrete with a step sizeD. The variabler and the
functions V(r ) and u(r ) become arrays:r→r ( i ), V(r )
→V(r ( i ))→V( i ), and u(r )→u(r ( i ))→u( i ). We use a fi-
nite difference method for the second derivative ofu(r ):

d2u~r !

dr2 → u~ i 11!1u~ i 21!22u~ i !

D2 . ~4!

After substituting these expressions into Eq.~3!, one obtains
a discrete version of the Schro¨dinger equation:

u~ i 11!52u~ i !2u~ i 21!1D2
l ~ l 11!

r 2 u~ i !

1
2mD2
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The boundary conditionsu(0)50 andu( i→`)→0 can only
be satisfied for certain values ofE, which correspond to the
allowed ‘‘bound-state’’ energies of the particle.
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We determine the bound-state energies using a bisection
method. First, a trial energyEt is chosen which lies below
the ground state energy. In Eq.~5!, u( i 11) is determined
from the values ofu( i ) andu( i 21). We assignu(0) a value
of 0, andu(1) is assigned a nonzero value@e.g.,u(1)51.0#.
Equation~5! can then be used to iterateu( i ) to a large value
of i 5 i max, well outside the core. We assignu( i max) the
valueu( i max)[test0. Next, the trial energy is increased by
an amountdE and the process is repeated. The function
u( i max) will have a different value,u( i max)[test1. If test0
and test1 have the same sign, then the trial energy is changed
again by an amountdE, test1→test0, and the process is
repeated. If test0 and test1 have opposite signs, then the
wave function atr 5 i max*D has changed sign and the trial
energy has passed over the ground state energy. The energy
step is reversed and halved,dE→2dE/2, test1→test0, and
the process is repeated to the desired accuracy.

To determine the energy of the first excited state, one
starts with a trial energy just above the ground state energy.
The trial energy is stepped up in a similar manner until the
energy converges. The next higher allowed energy is found
in a similar manner.

The bisection method is a simple way to solve for the
energy levels. Another method is to matchu(r ) to the Cou-
lomb wave functions at large values ofr. In both our ex-
amples, the potential reduces to that of a point Coulomb
potential whenr is beyond a certain value. Beyond this value
of r, the wave functions are the Coulomb wave functions due
to a point charge. There are analytic forms for these Cou-
lomb wave functions, so one often matches the solutions of
Eq. ~5! to these known functions. This method is quicker
than the bisection approach, but involves a knowledge of the
Coulomb wave functions which is usually not covered in an
undergraduate quantum course. We have successfully used
the bisection method in our undergraduate computational
chemistry and computational physics courses. It is simple,
and the students can visualize how the wave function goes to
zero for larger as the energy is varied.

For the alkali problem, we used a step size forr of 0.01 Å,
and iterated out to 20 Å. In the nuclear problem, a step size
of 0.01 fm was used, and we iterated the wave function out
to 12 fm. In both cases we were able to obtain a numerical
accuracy of four significant figures for the ground states. The
higher excited states required iteration to larger radial dis-
tance for comparable numerical accuracy. The accuracy was
tested by computing the ground and excited states of the
hydrogen atom and comparing the numerical answer to the
analytic solution. One can also use commercial software to
solve the Schro¨dinger equation ~e.g., MATHEMATICA ,
MAPLE!.3 Desktop computers are fast enough for quick con-
vergence.

III. ENERGY LEVELS IN ALKALI ELEMENTS

For the atomic application, we focus on the alkali ele-
ments: Li, Na, K, Rb, and Cs. The alkalis are relatively
simple atoms, since they have one valence electron orbiting
about a core of electrons in closed shells.4 Thus a mean field
approximation might be an accurate representation for the
electrostatic potential that the valence electron experiences.
We find that a simple model for the alkali atoms can yield
interesting results.

The full potential energy for the valence electron consists
of two pieces: the static Coulomb attraction due to the posi-
tive nucleus, and a repulsive mean field potential due to the
‘‘core’’ electrons. The Coulomb potential energy in Gauss-
ian units due to the nucleus is given byVnucleus52Ze2/r for
a nucleus withZ protons. Numerically,e2 equals 14.4 eV Å
or 1.44 MeV fm for the nuclear problem. We take the mean
field potential due to the core electrons to be that of a uni-
formly charged sphere of charge2(Z21)e. The size of the
sphere,c, is a parameter which is varied to best fit the data.
The complete potential energy, which we refer to as simply
the potential, is given by

V~r !52
Ze2

r
1Vscreening, ~6!

where

Vscreening51~Z21!e2
3c22r 2

2c3 if r<c

51
~Z21!e2

r
if r .c. ~7!

The potentialV(r ) is substituted into Eq.~3! and the
bound state energies of the valence electron are solved for
l 50, l 51, and l 52. In Table I we list the results of this
calculation along with data for selected energy levels.5 Al-
though the model is very simple, it produces surprisingly
good results.

The ground statel 50 energies are fitted for the different
elements by adjusting the parameterc. It is interesting to
note that the value ofc does not vary much for the different
atoms. This would suggest that the size of atoms does not
increase substantially as the atomic number is increased.
Once the ground state energy is fitted, one can examine how
well the other energy levels match the data. Remarkably, the
excited l 50 energy levels agree well with the data. Thel

Table I. Experimental and calculated values for the energy levels of the
alkali elements. The parameterc is the radius of the ‘‘screening sphere’’ of
uniform charge.

l 50 l 51 l 52
Calc Expt Calc Expt Calc Expt

Lithium (c50.56 Å)
5.39 5.39 3.45 3.65 1.51 1.51
2.02 2.02 1.53 1.55

Sodium (c50.55 Å)
5.15 5.15 3.15 3.03 1.51 1.52
1.92 1.95 1.43 1.39
1.02 1.02 0.78 0.80

Potassium (c50.66 Å)
4.34 4.34 2.93 2.72 1.50 1.67
1.76 1.73 1.35 1.28 0.83 0.94
0.94 0.94 0.73 0.74

Rubidium (c50.58 Å)
4.18 4.18 2.90 2.60 1.53 1.78
1.74 1.68

Cesium (c50.60 Å)
3.87 3.87 2.87 2.49 1.52 2.10
1.63 1.63
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51 andl 52 energy levels of the lighter elements also fit the
data fairly well. The model starts to break down with thel
51 andl 52 energy levels in Rb and Cs.

Wave functions for the different energy levels are also
calculated in the code. These wave functions can be used to
calculate spin–orbit splittings by numerically integrating6

Es-o5
\2~2l 11!

4m2c2 E
0

`

c* ~r !S dV

dr Dc~r !r dr . ~8!

We had our students calculate thel 51 spin–orbit split-
tings and compare to data. They varied the parameterc to
best fit the experimental values of the spin–orbit splittings.
Our results are listed in Table II along with the values ofc
which give the experimental ground state energy. The two
values ofc are quite close to each other.

This exercise has benefitted our students in a number of
ways. They apply the Schro¨dinger equation to an atom other
than hydrogen. They experience the validity and limitations
of applying a phenomenological model to experimental data.
The students also learned about energy level schemes and
spin–orbit splitting in alkalis. The exercise turned out to be
an interdisciplinary project. Chemistry and physics senior
students wrote the code in C to solve for the energy levels.
Computer science students translated the C code into a Java
applet7 for use on the web. Other chemistry and physics stu-
dents use the applet as a homework exercise to investigate
energy levels in the alkalis.

IV. BINDING ENERGY IN MIRROR NUCLEI

The independent particle model, or shell model, of the
nucleus has been successful in understanding many proper-
ties of nuclei. See Ref. 8 for a nice discussion of the histori-
cal development of the independent particle model. In this
model, the nucleons are treated as independent particles that
move in an average potential due to the other nucleons in the
nucleus.9,10 A detailed shell model treatment over a wide
range of nuclei is too specialized for an undergraduate class.
However, the spin–orbit and pairing interactions make inter-
esting topics. Here we describe a calculation that introduces
the student to some of the ideas behind the nuclear shell
model. We calculate the valence nucleon binding energy for
a set of mirror nuclei. The approach we take is relatively
simple, and appropriate for undergraduate students.

The set of nuclei we consider are mirror nuclei which have
uZ2Nu equal to 1, whereZ is the number of protons andN is
the number of neutrons in the nucleus. In each case, the
binding energy of the valence nucleon will be calculated and
compared with experiment. For example, the binding energy
of the valence neutron in13C and the binding energy of the
valence proton in13N will be calculated and compared with
the data. We treat the nucleus as a core plus the valence

nucleon, where the core contains an equal number of neu-
trons and protons. The allowed energies of the valence neu-
tron or proton are calculated by assuming it moves in a mean
field due to the core nucleus. The parameters of the mean
field potential are varied to fit the binding energy data.

The mean field potential consists of a strong part, and a
Coulomb repulsion for valence protons. Thus the proton’s
binding energy will be lower than that of a neutron interact-
ing with the same core in the mirror nucleus. This can be
seen in the data shown in Table III.11 In columns 3 and 4 we
list the experimental values for the binding energies of the
valence neutron and proton about the core nucleus given in
column 1. For example, the binding energy of the valence
neutron in13C is 4.946 MeV, and the binding energy of the
valence proton in13N is 1.943 MeV. The difference in these
two numbers is due to the Coulomb interaction, and gives
information about the size of the nucleus. The magnitude of
the binding energies is determined by the strength of the
mean field potential.

To represent the strong interaction between the valence
nucleon and the core nucleus, we use a Woods–Saxon
potential:12

V~r !5
2V0

11e~r 2c!/a . ~9!

This potential form has been successful in describing nuclear
densities.13 There are three parameters: the potential strength
V0 , the diffusivity parametera, and the size parameterc
5r 0A1/3, whereA5Z1N. The bound state energy levels are
mainly determined by the strength and range of the potential.
Since we want to minimize the number of parameters we
vary, we keep the parametera fixed at 0.5 fm, and varyr 0

and V0 . A value of a50.5 fm is consistent with the values
listed in Ref. 13.

Nuclei with an equal number of neutrons and protons of-
ten have spin and isospin zero. This is the case for all 15
nuclei listed in Table III whose cores contain an even num-
ber of neutrons~and protons!. For these nuclei, it is reason-
able to approximate the strong mean field potential as spheri-
cally symmetric, and to be the same for both valence neutron
or proton in the corresponding mirror nucleus. Of the 15
nuclei in Table III whose core have an odd number of neu-
trons ~and protons!, only 34Cl, 42Sc, 46V, 50Mn, 54Co, and
62Ga are spin zero nuclei. In general, for odd–odd nuclei it is
not clear if a spherically symmetric potential is an appropri-
ate form to use. For completeness, we include all the nuclei
in Table III in the analysis, bearing in mind that a simple
model might not be appropriate for odd–odd nuclei.

The orbital angular momentum,l, of the valence nucleon
can be determined from the total spin,j, and parity of the
nucleus by the relationl 5 j 61/2. The parity is positive for
evenl and negative for oddl. In the second column of Table
III we list the total spin and the parity for the nuclei we
examined. The values forj and parity correspond to the nu-
clei with the listed core plus one nucleon. For example, for
the 12C core, both13C and13N have a spin ofj 51/2 and a
negative parity. Thel value listed is the one we used in our
calculation. The values ofj and parity in Table III are ob-
tained from Ref. 11.

In Table III we have grouped successive nuclei that have
the same value ofl. Evidence for a shell structure is seen in
the grouping of the orbital angular momenta. However, nu-
clei are too complicated for the independent particle model

Table II. Values of the range parameterc which reproduces the correct
experimental ground state energy and spin–orbit splitting for thel 51 level.

Element~Z!
c ~Å!

for ground state energy
c ~Å!

for spin–orbit splitting

Na~11! 0.55 0.528
K~19! 0.66 0.657
Rb~37! 0.58 0.576
Cs~55! 0.60 0.589

850 850Am. J. Phys., Vol. 68, No. 9, September 2000 Cheng, Goldstein, and Siegel



to be universally valid, and thel value for some nuclei do not
match the group. For the18F core, both19F and19Ne have
positive parity with j 51/2. This would imply thatl equals
zero. However, the core18F has a spin ofj 51, so the va-
lence nucleon could havel 52, j 53/2, and couple to the
core, resulting in a total spin ofj 51/2. We chosel 52,
which is the same as the other nuclei in the shell. One other
exception is with47V and47Cr for the46V core nucleus. Both
these nuclei have negative parity andj 53/2. Since the
ground state of46V has a spin ofj 50, we use a value ofl
51 for the valence nucleons in47V and 47Cr.

For the Coulomb potential, which only the proton feels,
we use the potential due to a uniformly charged sphere of
radiusc5r 0A1/3 @see Eq.~7!#. The same Woods–Saxon po-
tential represents the strong interaction for both the valence
neutron and valence proton in mirror nuclei which haveuN
2Zu51. Thus, the two binding energies, valence neutron
and proton, for each pair of mirror nuclei in Table III can be
used to determine the two Woods–Saxon parametersr 0 and
V0 . For example, for the12C core, one picks a value forr 0

and determinesV0 such that thel 51 binding energy of the
valence neutron in13C is 4.946 MeV. Using these same val-
ues for r 0 and V0 , the Coulomb potential is added to the
strong potential and one calculates again thel 51 binding

energy. If this binding energy is not equal to 1.943 MeV,
then the value ofr 0 is changed and the procedure is repeated
until both binding energies are correct. For each nucleus we
could only find one set of values ofr 0 and V0 that gave
correct binding energies for both mirror nuclei. We used a
computer program to carry out the two-parameter search.

We list our results in Table III. The values ofr 0 and V0
given in the last two columns produce the experimental pro-
ton and neutron binding energies in columns 3 and 4. We
applied the model to all the nuclei that had experimentally
measured binding energies. We were unable to calculate val-
ues for4He and8Be since neither5Li nor 9B is sufficiently
stable. The width of5Li is 1.5 MeV and that of9B is 0.5 keV.
The heaviest nuclear core we fit is62Ga. Heavier nuclei
which have an equal number of neutrons and protons are not
stable enough for this analysis. The results listed in Table III
are graphed in Figs. 1–4.

Having calculatedr 0 and V0 , the student can search for
trends in these values for the different nuclei. Some qualita-
tive patterns are noticeable, and we discuss below some
properties of the shell model that the student can investigate.

Fig. 1. A graph of the size parameterr 0 , from Table III, as a function of
atomic mass numberA. r 0 is defined in the text.

Fig. 2. A graph of the Woods–Saxon potential strengthV0 , from Table III,
as a function of atomic mass numberA.

Table III. Experimental and calculated values for the valence nucleon. The
binding energies are given in units of mega electron volts.

Core
nucleus l ( jP)

Binding energy
of valence

neutron

Binding energy
of valence

proton r 0 ~fm! V0 ~MeV!

He~4! ¯ ¯ ¯ ¯ ¯

Li ~6! 1~3/22! 7.250 5.606 1.52 43.11
Be~8! 1~3/22! 1.665 ¯ ¯ ¯

B~10! 1~3/22! 11.454 8.689 1.34 47.41

C~12! 1~1/22! 4.946 1.943 1.29 35.11
N~14! 1~1/22! 10.833 7.297 1.33 40.11

O~16! 2~5/21! 4.144 0.601 1.34 47.71
F~18! 2~1/21! 10.432 6.412 1.36 52.64
Ne~20! 2~3/21! 6.761 2.431 1.32 46.80
Na~22! 2~3/21! 12.419 7.580 1.32 53.09
Mg~24! 2~5/21! 7.331 2.271 1.29 44.91
Al ~26! 2~5/21! 13.058 7.463 1.28 51.81

Si~28! 0~1/21! 8.473 2.748 1.28 46.54
P~30! 0~1/21! 12.312 6.133 1.30 49.91

S~32! 2~3/21! 8.641 2.276 1.27 41.42
Cl~34! 2~3/21! 12.644 5.896 1.29 45.05
Ar~36! 2~3/21! 8.789 1.857 1.27 39.29
K~38! 2~3/21! 13.077 5.764 1.29 43.39

Ca~40! 3~7/22! 8.363 1.085 1.29 51.62
Sc~42! 3~7/22! 12.138 4.488 1.29 55.22
Ti~44! 3~7/22! 9.520 1.614 1.28 51.49
V~46! 1~3/22! 13.001 4.767 1.31 58.03
Cr~48! 3~5/22! 10.582 2.085 1.27 51.14
Mn~50! 3~5/22! 13.687 4.885 1.27 53.66
Fe~52! 3~7/22! 10.683 1.599 1.25 50.11
Co~54! 3~7/22! 14.090 4.614 1.25 53.82

Ni~56! 1~3/22! 10.247 0.694 1.27 51.34
Cu~58! 1~3/22! 12.763 2.887 1.28 53.16
Zn~60! 1~3/22! 10.231 0.454 1.31 47.21
Ga~62! 1~?! 12.765 2.203 1.25 53.26
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The first feature is seen in Fig. 1. The value ofr 0 is fairly
constant, and is approximately 1.3 fm. This indicates that the
volume of the nucleus is proportional to mass numberA. In
the shell model, the mean field potential is broken up into
three parts:

V~r !5Vcentral~r !1Vspin–orbit~r !L•S1Vpairing. ~10!

The central potential,Vcentral, is the strongest of the three,
and does not depend on the nucleon’sl or j value. The spin–
orbit potential is often taken to be proportional to
(1/r )dVcentral/dr. The pairing interaction is present in odd–
odd nuclei, where the valence nucleon can pair up with an
odd nucleon in the core. Motivated by the shell model, we
express the potential strengthV0 in Eq. ~9! in a similar man-
ner:

V05Vc1VsoL•S1Vpairing. ~11!

This is equivalent to having the same Woods–Saxon func-
tion for all three terms in Eq.~10!. Next we examine how

well the variations ofV0 follow the pattern described by Eq.
~11!.

In Fig. 2 we plot the value ofV0 versus atomic mass
numberA. The see-saw variation of potential strength with
mass number is clearly seen. Nuclei whose core have an odd
number of neutrons, or protons, have a value forV0 that is
greater than that for nuclei with an even number of neutrons,
or protons, in the core. We plot this difference, which is due
to the pairing interaction, in Fig. 3 for values ofA up to 58.
One can see that the trend of the pairing potential is to de-
crease with mass numberA. Some estimates of the pairing
strength have a 1/AA dependence.9 For comparison, we also
plot 22/AA MeV, which is our best 1/AA function fit to the
data.

If one subtracts the pairing interaction from nuclei with an
odd number of core protons~or neutrons!, the l and j depen-
dence ofV0 can be seen. In Fig. 4 we plotV0 minus the
pairing interaction, 22/AA MeV, as a function of mass num-
ber. The first two nuclei plotted are for the12C and14N core,
which havel 51 and j 51/2. The potential increases for the
next six nuclei, which havel 52 and j 55/2. The next two
l 50, j 51/2 nuclei have approximately the same potential.
The potential drops for the next fourl 52, j 53/2 nuclei.
There is a large increase for the next eight nuclei (l 53), and
a slight decrease inV0 for the last fourl 51 nuclei in the list.

A key observation in Fig. 4 is that nuclei whose total
angular momentumj is equal tol 11/2 have a higher mean
field potential than nuclei withj 5 l 21/2. This is indicative
of an L•S interaction. In the case ofs51/2, L•S51 l /2 if
j 5 l 11/2, andL•S52( l 11)/2 if j 5 l 21/2. Thus, ifVs-o in
Eq. ~11! is positive, thenV0 is greater forj 5 l 11/2 than for
j 5 l 21/2. This feature is seen in Fig. 4.

Obtaining a value forVc and Vs-o is complicated by the
fact that certain nuclei satisfy the shell model better than
others. Nonetheless, one can obtain an estimate forVc and
Vs-o from the data by averaging the values ofV0 in each
shell. In Table IV we list the average potential for each shell.
The spin–orbit potential strengthVs-o can be estimated from
the splitting between thel 51 shells of4He and12C and the
l 52 shells of16O and32S. The difference ofL•S for j 5 l
11/2 and j 5 l 21/2 is (2l 11)/2. Applying this formula to
the lowest l 51 nuclei gives 40.4234.651.5Vs-o, or Vs-o

53.8 MeV. For l 52 we have 47.1240.452.5Vs-o, or Vs-o

52.6 MeV. So on average,Vs-o'3.2 MeV. In the fourth col-
umn of Table IV, we list the value of 3.2L•S for each of the
shells. The last column listsVc5V023.2L•S. For nuclei
with A.16 the values ofVc are approximately the same,
46.162.2 MeV.

Fig. 3. The difference inV0 , from Table III, for successive nuclei for values
of A from 12 to 58. The curve is 22/AA MeV, which is our best 1/AA
function fit to the data.

Fig. 4. A graph of the Woods–Saxon potential strength,V0 , minus the
pairing potential, 22/AA MeV, vs atomic mass numberA.

Table IV. Average central and spin–orbit potentials.

First nucleus
in shell l ( jP)

V02Vpairing

average~MeV!
3.2L•S
~MeV!

Vc

~MeV!

He~4! 1~3/22! 40.4 11.6 38.8
C~12! 1~1/22! 34.6 23.2 37.8
O~16! 2~5/21! 47.1 13.2 43.9
Si~28! 0~1/21! 46.2 0 46.2
S~32! 2~3/21! 40.4 24.8 45.2
Ca~40! 3~7/22! 51.5 14.8 46.7
Ni~56! 1~3/22! 49.8 11.6 48.2
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Thus the potential form of Eq.~11! fits the data fairly well,
particularly for nuclei withA.16. Using only five potential
parameters, one obtains a close fit for the valence nucleon
binding energies for these 46 nuclei:r 051.3 fm, a
50.5 fm, Vc546.162.2 MeV, Vs-o53.2 MeV, andVpairing

522/AA MeV. The lighter nuclei have a somewhat lower
value forVc of around 38.5 MeV.

This simple mean field approach yields results close
enough to the experimental data for students to apply the
shell model to the set of mirror nuclei listed in Table III. We
should point out that the theoretical analysis of nuclear en-
ergy levels is a complicated problem. In particular, some of
the odd–odd nuclei examined here are not well described by
the shell model. The student should realize that the conclu-
sions and parameter values determined here have meaning
only within the context of the model used. Recognizing these
limitations is in itself a good lesson for physicists.

V. SUMMARY

We have presented two examples which use a mean field
approximation to calculate energy levels. The examples are
appropriate for an undergraduate class in quantum mechan-
ics, computational physics, or modern physics. The mean
field calculations are interesting, since the students are able
to compare with experimental data. These problems comple-
ment ‘‘standard’’ textbook problems in quantum mechanics,
and let the student experience the successes and failures of a
model calculation.
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