Nice things about mean fields: Mean field potentials for the classroom
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We present two examples which use a mean field potential to determine valence electron and
nucleon energy levels in atoms and nuclei, respectively. In atoms, we compute the energy levels of
the alkali elements, and in nuclei the binding energy of valence nucleons in mirror nuclei are
calculated. In both cases, the student can compare the results with experiment and vary the
parameters of the calculation to best fit the data. 2600 American Association of Physics Teachers.

[. INTRODUCTION valence particle and the other particles in the atom or nucleus
can be represented by a mean field potentigt,). For the

0 cases we considey|(r) is spherically symmetric.

The potential V(r), is inserted into the time-independent

Schralinger equation:

One of the most important courses in an undergraduat
physics student’'s education is quantum mechanics. Part o
every quantum course is the development of the Stihger
equation and an interpretation of its solution. Applications of
the Schrdinger equation focus on the scattering and the K2
bound state problem, both usually handled in coordinate —ﬁVZ‘I’ﬂLV(r)‘I’:E‘I’- 1)
space. For the bound state problem, potentials which can be
solved analytically are given as examples in most textbooks-or bound state solutions, the wave functibrand the inte-
The one- and three-dimensional square well, the harmonigral [¥*W¥ dV over all space must be finite. Thus, as
oscillator, and the Coulomb potential have analytic solutions—,«, ¥ must approach zero faster tham.18ince the poten-
and are used to illustrate the fundamentals of energy quantiia| is spherically symmetric, the angular dependence can be
zation in bound systems. The Coulomb potential is partiCUseparated from the radial. Writindf =R(r)Y,,(6,#) as a
larly important, since the solutions can be compared withyrodyct of a radial part times a spherical harmonic, the above

experimental data. equation reduces to
In recent years, the personal computer has entered the

classroom and given students and teachers the ability to ob- %2 ( 1d ( ) dR) 1+

tain accurate numerical solutions to differential equations in~ 2m |2 dr\" dr. 7 R(") | +V(NR(r)

a short time. Thus, in addition to using potentials which have
analytic solutions, the student can insert any reasonably be- =ER(r). v
haved potential into the Schiimger equation and solve for T . L
the allowed energies of the system. With this new math- Aiurther S|mpl|f|cat|_on is obtained by W”t'n@(r) as
ematical tool, one can supplement the analytic solutions wit .(r)— R(r)/r. The radial part of the Schdinger equation
interesting potentials to be solved numerically. inally becomes

In this article, we present two problems in atomic and %2 (d2u(r) I(1+1)
nuclear physics for students in an undergraduate quantum or ﬁ(v— r—ZU(r)
computational physics class. In both examples the students
compare the calculations with experimental data. Many abrFor W to be finite,u(0) equals 0, and for bound stategr)
stract ideas are introduced in an undergraduate quantum Mmgopes to zero ag—s .
chanics course, so calculations that can be compared with we solve Eq.(3) numerically by making the radial coor-
experiment are particularly valuablen the first example, dinate discrete with a step size The variabler and the

the energy levels of the valence electron in the alkali elefnctions V(r) and u(r) become arraysr—r(i), V(r)
ments are computed. The students vary one parameter to bﬁtV(r(i))HV(i) andu(r)—u(r(i))—u(i). We u’se a fi-

fit the data. In the second example, the binding energy of

valence nucleons for certain mirror nuclei are calculated. Th&

potential has a size and strength parameter, which are varied d?u(r) u(i+1)+u(i—1)—2u(i)

to fit the data. T A2 - 4
We first discuss the numerical method we used to calcu-

late the energy levels, followed by the atomic and nucleaifter substituting these expressions into E8), one obtains

+V(ryu(r)=Eu(r). 3

ite difference method for the second derivativeu¢r):

examples. a discrete version of the Scltimger equation:
. . . ,U+1)
Il. NUMERICAL SOLUTION OF THE ui+1)=2u(i)—u(i—1)+A*—7—u(i)
SCHRODINGER EQUATION
2mAZ _
Numerical solutions to differential equations are taught in + 2z (V) —Bu(i). 5

numerical methods and computational physics coufses

we apply these technigues to solve the Sdhwger equation. The boundary conditions(0)=0 andu(i—%)—0 can only
In this section we summarize the specific approach that oube satisfied for certain values &f which correspond to the
students used. We assume that the interaction between th#owed “bound-state” energies of the particle.
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We determine the bound-state energies using a bisectioffble I. Experimental and calculated values for the energy levels of the
method. Eirst. a trial energi, is chosen which lies below alkali elements. The parameteis the radius of the “screening sphere” of
’ ' . . . uniform charge.
the ground state energy. In E(p), u(i +1) is determined 9

from the values ofi(i) andu(i —1). We assignu(0) a value =0 =1 =2

of 0, andu(1) is assigned a nonzero valleg.,u(1)=1.0]. Calc Expt Calc Expt Calc Expt
Equation(5) can then be used to iterati€i) to a large value Lithium (c=0.56 A)

of i=i max, well outside the core. We assigfi max) the 5.39 5.39 3.45 3.65 151 1.51
valueu(i max)=test0. Next, the trial energy is increased by 2.02 2.02 1.53 1.55

an amountéE and the process is repeated. The function Sodium €=0.55 A)

u(i max) will have a different valuey(i max)=testl. If testO 5.15 5.15 3.15 3.03 1.51 1.52
and testl have the same sign, then the trial energy is changed 1.92 1.95 1.43 1.39

again by an amountE, testl-testO, and the process is 1.02 1.02 0.78 0.80

repeated. If testO and testl have opposite signs, then the Potassium ¢—0.66 A)

wave function ar =i max*A has changed sign and the trial 4.34 4.34 203272 150 1.67
energy has passed over the ground state energy. The energy 176 1.73 1.35 1.28 0.83 0.94
step is reversed and halves:— — S6E/2, testl-testO, and 0.94 0.94 0.73 0.74

the process is repeated to the desired accuracy. Rubidium ©=0.58 A)

To determine the energy of the first excited state, one 4.18 4.18 290;6'0 153 1.78
starts with a trial energy just above the ground state energy. ;74163 R R
The trial energy is stepped up in a similar manner until the

energy converges. The next higher allowed energy is found Cesium €=0.60 A)
in a similar manner. 3.87 3.87 2.87 2.49 1.52 2.10
The bisection method is a simple way to solve for the 163163

energy levels. Another method is to matefr) to the Cou-
lomb wave functions at large values of In both our ex-
amples, the potential reduces to that of a point Coulomb

potential when is beyond a certain value. Beyond this value  The full potential energy for the valence electron consists
of r, the wave functions are the Coulomb wave functions duef two pieces: the static Coulomb attraction due to the posi-
to a point charge. There are analytic forms for these Coutive nucleus, and a repulsive mean field potential due to the
lomb wave functions, so one often matches the solutions ofcore” electrons. The Coulomb potential energy in Gauss-
Eq. (5) to these known functions. This method is quickerjan units due to the nucleus is given Wyqe & — Z€%/r for
than the bisection approach, but involves a knowledge of thg nycleus withz protons. Numericallye? equals 14.4 eV A
Coulomb wave functions which is usually not covered in angy 1 44 MeV fm for the nuclear problem. We take the mean
undergraduate quantum course. \We have successfully usgd|q potential due to the core electrons to be that of a uni-

the bisection method in our undergraduate computation%rmw charged sphere of charge(Z—1)e. The size of the

chemistry and computational physics courses. It is sSimplegynere o is a parameter which is varied to best fit the data.

and the students can visualizg how_the wave function goes t he complete potential energy, which we refer to as simply
zero for larger as the energy is varied. the potential, is given by

For the alkali problem, we used a step sizerfof 0.01 A, '
and iterated out to 20 A. In the nuclear problem, a step size
of 0.01 fm was used, and we iterated the wave function out == T *+ Vscreening ®
to 12 fm. In both cases we were able to obtain a numerical
accuracy of four significant figures for the ground states. Thavhere
higher excited states required iteration to larger radial dis- 2_y2

tance for comparable numerical accuracy. The accuracy was Vscreening +(Z— 1)eZT if r<c

tested by computing the ground and excited states of the ¢

hydrogen atom and comparing the numerical answer to the (Z—1)e?

analytic solution. One can also use commercial software to =+ — if r>c. (7)

solve the Schidinger equation (e.g., MATHEMATICA,

MAPLE).® Desktop computers are fast enough for quick con- The potential V(r) is substituted into Eq(3) and the

vergence. bound state energies of the valence electron are solved for
I=0,1=1, andl=2. In Table | we list the results of this
calculation along with data for selected energy level:

IIl. ENERGY LEVELS IN ALKAL|I ELEMENTS though the model is very simple, it produces surprisingly
good results.

For the atomic application, we focus on the alkali ele- The ground staté=0 energies are fitted for the different
ments: Li, Na, K, Rb, and Cs. The alkalis are relatively elements by adjusting the parameterlt is interesting to
simple atoms, since they have one valence electron orbitingote that the value of does not vary much for the different
about a core of electrons in closed shélEhus a mean field atoms. This would suggest that the size of atoms does not
approximation might be an accurate representation for thincrease substantially as the atomic number is increased.
electrostatic potential that the valence electron experience§nce the ground state energy is fitted, one can examine how
We find that a simple model for the alkali atoms can yieldwell the other energy levels match the data. Remarkably, the
interesting results. excited| =0 energy levels agree well with the data. The
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Table II. Values of the range parametewhich reproduces the correct nucleon, where the core contains an equal number of neu-
experimental ground state energy and spin—orbit splitting fof the level. trons and protons. The allowed energies of the valence neu-
tron or proton are calculated by assuming it moves in a mean

c(A) c(R) .
Element(2) for ground state energy  for spin—orbit splitting f!eld due to the core_nucleu.s. The. parameters of the mean
field potential are varied to fit the binding energy data.
Na(11) 0.55 0.528 The mean field potential consists of a strong part, and a
K(19) 0.66 0.657 Coulomb repulsion for valence protons. Thus the proton’s
Rb37) 0.58 0576 binding energy will be lower than that of a neutron interact-
Cy(55) 0.60 0.589

ing with the same core in the mirror nucleus. This can be
seen in the data shown in Table tHiIn columns 3 and 4 we

list the experimental values for the binding energies of the
valence neutron and proton about the core nucleus given in
column 1. For example, the binding energy of the valence

=1 andl =2 energy levels of the lighter elements also fit the
data fairly well. The model starts to break down with the neutron in'3C is 4.946 MeV, and the binding energy of the

=1 andl =2 energy levels in Rb and Cs. : . . X
Wave functionsg)f/or the different energy levels are alsovalence proton it®N is 1.943 MeV. The difference in these

calculated in the code. These wave functions can be used %ﬁwfgr:]nuarggﬁrgb'gu?Ltjﬁetgigzeoﬁﬁgl%Tgéﬂ;er.?ﬁgo;’aggﬁuggii
calculate ng_orb't splittings by numerically integrafing the binding energies is determined by the strength of the
Ac(214+1) (=

. dav mean field potential.
s~ am2eZ ) ¥ (M| gy #rrdr. tS) To represent the strong interaction between the valence
nucleon and the core nucleus, we use a Woods—Saxon
We had our students calculate the 1 spin—orbit split-  potential*?
tings and compare to data. They varied the parameter
best fit the experimental values of the spin—orbit splittings. V(r)= —Vo 9)
Our results are listed in Table Il along with the valuescof 1+elr—o/a

which give the experimental ground state energy. The twa_ . _ . -
values ofc are quite close to each other. QI'h|s potential form has been successful in describing nuclear

This exercise has benefitted our students in a number d}ensmesl. There are three parameters: the potential strength

ways. They apply the Schiinger equation to an atom other Yo tqg diffusivity parameter, and the size parameter
than hydrogen. They experience the validity and limitations= oA, whereA=Z+N. The bound state energy levels are
of applying a phenomenological model to experimental datamainly determined by the strength and range of the potential.
The students also learned about energy level schemes afince we want to minimize the number of parameters we
spin—orbit splitting in alkalis. The exercise turned out to bevary, we keep the parametarfixed at 0.5 fm, and vary,

an interdisciplinary project. Chemistry and physics seniorandV,. A value ofa=0.5fm is consistent with the values
students wrote the code in C to solve for the energy leveldisted in Ref. 13.

Computer science students translated the C code into a JavaNuclei with an equal humber of neutrons and protons of-
applef for use on the web. Other chemistry and physics stuten have spin and isospin zero. This is the case for all 15
dents use the applet as a homework exercise to investigatriclei listed in Table 1l whose cores contain an even num-

energy levels in the alkalis. ber of neutrongand protons For these nuclei, it is reason-
able to approximate the strong mean field potential as spheri-
IV. BINDING ENERGY IN MIRROR NUCLEI cally symmetric, and to be the same for both valence neutron

or proton in the corresponding mirror nucleus. Of the 15

The independent particle model, or shell model, of thenuclei in Table Ill whose core have an odd number of neu-
nucleus has been successful in understanding many propdrens (and protong only *Cl, 42Sc, “%v, %Mn, ®*Co, and
ties of nuclei. See Ref. 8 for a nice discussion of the histori®2Ga are spin zero nuclei. In general, for odd—odd nuclei it is
cal development of the independent particle model. In thisot clear if a spherically symmetric potential is an appropri-
model, the nucleons are treated as independent particles thae form to use. For completeness, we include all the nuclei
move in an average potential due to the other nucleons in thig Table Il in the analysis, bearing in mind that a simple
nucleus® A detailed shell model treatment over a wide model might not be appropriate for odd—odd nuclei.
range of nuclei is too specialized for an undergraduate class. The orbital angular momenturh, of the valence nucleon
However, the spin—orbit and pairing interactions make intercan be determined from the total spjn,and parity of the
esting topics. Here we describe a calculation that introducegucleus by the relatioh=j +1/2. The parity is positive for
the student to some of the ideas behind the nuclear shedlven| and negative for odtl In the second column of Table
model. We calculate the valence nucleon binding energy fofj| we list the total spin and the parity for the nuclei we
a set of mirror nuclei. The approach we take is relativelyexamined. The values fgrand parity correspond to the nu-
simple, and appropriate for undergraduate students. clei with the listed core plus one nucleon. For example, for

The set of nuclei we consider are mirror nuclei which havetne 12c core, both!3C and*3N have a spin of =1/2 and a
|Z—N]| equal to 1, wher& is the number of protons arldis ~ negative parity. Thé value listed is the one we used in our
the number of neutrons in the nucleus. In each case, thgalculation. The values df and parity in Table IIl are ob-
binding energy of the valence nucleon will be calculated andajned from Ref. 11.
compared with experiment. For example, the binding energy |n Table Il we have grouped successive nuclei that have
of the valence neutron it*C and the binding energy of the the same value df Evidence for a shell structure is seen in
valence proton irt®N will be calculated and compared with the grouping of the orbital angular momenta. However, nu-
the data. We treat the nucleus as a core plus the valenadei are too complicated for the independent particle model
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Table Ill. Experimental and calculated values for the valence nucleon. The 1.6
binding energies are given in units of mega electron volts.
[ ]
Binding energy Binding energy 1.5 [
Core of valence of valence
nucleus [(jP) neutron proton ro (fm) Vy (MeV)
6 14
He(4) £ .
Li(e)  1(3/2-) 7.250 5.606 1.52 43.11 . * e L.
Be(8) 1(3/2-) 1.665 = 13 o e..® o ove *
* [ X ] L ] [ ]
B(10) 1(3/2-) 11.454 8.689 1.34 47.41 ) o .
C(12  1(1/2-) 4.946 1.943 1.29 35.11 -
N(14)  1(1/2-) 10.833 7.297 1.33 40.11 :
0(16)  2(5/2+) 4.144 0.601 1.34 47.71 |
F(18  2(1/2+) 10.432 6.412 1.36 52.64 11
Ne(20) 2(3/2+) 6.761 2.431 1.32 46.80 0 0 20 3 4 50 60 70
Na(22) 2(3/2+) 12.419 7.580 1.32 53.09 )
Mg(24) 2(5/2+) 7.331 2.271 129 4491 Atomic Mass Number A
Al(26) 2(5/2+) 13.058 7.463 1.28 51.81 _ . .
Fig. 1. A graph of the size parametgy, from Table Ill, as a function of
Si(28) 0(1/2+) 8.473 2.748 1.28 46.54 atomic mass numbek. r is defined in the text.
P(30)  O(1/2+) 12.312 6.133 1.30 49.91
E(I?ei)l) gggi; égﬁ é-gg ig; jé-gg energy. If this binding energy is not equal to 1.943 MeV,
Ar(36) 2(3/2+) 8789 1857 197 39.29 the_n the val_ue_ofo is che_mged and the procedure is repeated
K(38) 2(3/2+) 13.077 5.764 1.29 43.39 until both binding energies are correct. For each nucleus we
could only find one set of values of, and V, that gave
géjg)) ggg:; lg-igg 1'323 ﬁg gégg correct binding energies for both mirror nuclei. We used a
Ti(a4) 3(7/2-) 9.520 1614 128 5149  COMputer program to carry out the two-parameter search.
V(46)  1(3/2-) 13.001 4.767 1.31 58.03 We list our results in Table Ill. The values of andV,
Cr(48) 3(5/2-) 10.582 2.085 1.27 51.14  given in the last two columns produce the experimental pro-
Mn(50) 3(5/2-) 13.687 4.885 1.27 53.66  ton and neutron binding energies in columns 3 and 4. We
Fe52) 3(7/2-) 10.683 1.599 1.25 50.11  applied the model to all the nuclei that had experimentally
Co(34 3(7/2-)  14.090 4.614 125 5382 measured binding energies. We were unable to calculate val-
Ni(56) 1(3/2—) 10.247 0.694 1.27 5134  ues for*He and®Be since neithePLi nor °B is sufficiently
Cus8 1(3/2-)  12.763 2.887 128 5316  stable. The width ofLiis 1.5 MeV and that ofB is 0.5 keV.
Zn(€0 1(3/2-) 10231 0.454 131 4721 The heaviest nuclear core we fit %Ga. Heavier nuclei
Ga62) 1(?) 12.765 2.203 1.25 53.26

to be universally valid, and tHevalue for some nuclei do not

which have an equal number of neutrons and protons are not
stable enough for this analysis. The results listed in Table IlI
are graphed in Figs. 1-4.

Having calculated, andV,, the student can search for
trends in these values for the different nuclei. Some qualita-

match the group. For th®F core, both'®F and'®Ne have
positive parity withj=1/2. This would imply that equals
zero. However, the coréF has a spin of =1, so the va-
lence nucleon could have=2, j=3/2, and couple to the
core, resulting in a total spin of=1/2. We chosd =2,
which is the same as the other nuclei in the shell. One other
exception is witlfV and*’Cr for the*®V core nucleus. Both
these nuclei have negative parity afer3/2. Since the
ground state of% has a spin off =0, we use a value df

=1 for the valence nucleons iV and*'Cr.

For the Coulomb potential, which only the proton feels,
we use the potential due to a uniformly charged sphere of
radiusc=r A% [see Eq(7)]. The same Woods—Saxon po-
tential represents the strong interaction for both the valence
neutron and valence proton in mirror nuclei which haNe
—Z|=1. Thus, the two binding energies, valence neutron
and proton, for each pair of mirror nuclei in Table Il can be
used to determine the two Woods—Saxon parameteasnd
V,. For example, for thé?C core, one picks a value fog,
and determine¥, such that thé =1 binding energy of the
valence neutron iA°C is 4.946 MeV. Using these same val-

Potential Strength (MeV)

60

54
48
42

36 |

30

tive patterns are noticeable, and we discuss below some
properties of the shell model that the student can investigate.

10

20

30

40

50

Mass Number A

60

70

ues forry and Vo, the Coulomb potential is added to the Fig. 2. A graph of the Woods—Saxon potential strendggh from Table Il

strong potential and one calculates again ltkel binding
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10 - Table IV. Average central and spin—orbit potentials.

»:; First nucleus Vo= Vpairing 3.2-S V.
O 8 in shell I(jP) average(MeV) (MeV) (MeV)
‘E’ He(4) 1(3/2-) 40.4 +1.6 38.8
s C(12) 1(1/2-) 34.6 -3.2 37.8
T 0(16) 2(5/2+) 47.1 +3.2 439
¥ Si(28) 0(1/2+) 46.2 0 46.2
S S(32) 2(3/2+) 40.4 -4.8 45.2
&0 Ca40) 3(7/2-) 51.5 +4.8 46.7
E Ni(56) 1(3/2-) 49.8 +1.6 48.2
‘" 27 .
&7 2A2 (Mew)

0 e I well the variations ol follow the pattern described by Eq.

10 20 30 40 50 60 70 (12).

Mass Number A In Fig. 2 we plot the value ol/, versus atomic mass

numberA. The see-saw variation of potential strength with
Fig. 3. The difference iV, from Table Ill, for successive nuclei for values mass number is clearly seen. Nuclei whose core have _an odd
of A from 12 to 58. The curve is 22/ MeV, which is our best A ~ humber of neutrons, or protons, have a value\fgrthat is
function fit to the data. greater than that for nuclei with an even number of neutrons,
or protons, in the core. We plot this difference, which is due
to the pairing interaction, in Fig. 3 for values Afup to 58.
. . o _ One can see that the trend of the pairing potential is to de-
The first feature is seen in Fig. 1. The valuergfis fairly  crease with mass numbé: Some estimates of the pairing
constant, and is approximately 1.3 fm. This indicates that thgtrength have a 3/A dependenc@For comparison, we also
volume of the nucleus is proportional to mass numbemn 55 55/ /A MeV, which is our best /A function fit to the
the shell model, the mean field potential is broken up Nty ta
three parts: If one subtracts the pairing interaction from nuclei with an

V(1) =Veentral ) + Vspin-orbit ) L - S+ Vpairing- (10) odd number of core protor(er neutrong thel andj depen-

. . 1\% . In Fig. 4 I i h
The central potentialy ¢onyan IS the strongest of the three, dence ofV, can be seen. In Fig. 4 we plafo minus the
and does not depend on the nucledn j value. The spin— pairing interaction, 22/AMeV, as a function of mass num-

orbit potential is often taken to be proportional to Der- The firsttwo nuclei plotted are for théC and'“N core,
(1/r)dVenea/dr. The pairing interaction is present in odd— which _havel =_1 anQJ =1/2. The potgntlal increases for the
odd nuclei, where the valence nucleon can pair up with af€xt six nuclei, which havé=2 andj=5/2. The next two
odd nucleon in the core. Motivated by the shell model, wel =0, j=1/2 nuclei have approximately the same potential.

express the potential strengiy in Eq. (9) in a similar man-  The potential drops for the next four=2, j=3/2 nuclei.
ner: There is a large increase for the next eight nudlei§), and

a slight decrease M, for the last foud =1 nuclei in the list.

Vo=Vet Vsd- - St Vpairing: (1D Agkey observatioon in Fig. 4 is that nuclei whose total
This is equivalent to having the same Woods—Saxon funcangular momentun is equal tol + 1/2 have a higher mean
tion for all three terms in Eq(10). Next we examine how field potential than nuclei with=1—1/2. This is indicative

of anL- S interaction. In the case of=1/2,L-S=+1/2 if

j=1+1/2,andL-S=—(1+1)/2if j=1—1/2. Thus, ifVg4in
60 Eq. (11) is positive, therV is greater forj =1+ 1/2 than for

i j=1—1/2. This feature is seen in Fig. 4.

. Obtaining a value foN/, and V¢, is complicated by the
. fact that certain nuclei satisfy the shell model better than
— %% 0 o others. Nonetheless, one can obtain an estimat®/ faand
48 [ So, o . V¢, from the data by averaging the values ¢ in each
I . shell. In Table IV we list the average potential for each shell.
The spin—orbit potential strengi_, can be estimated from
. : the splitting between the=1 shells of*He and'“C and the
I =2 shells of'®0 and®?S. The difference of.-S for j=I
36~ . ; +1/2 andj=1-1/2 is (2 +1)/2. Applying this formula to
the lowestl=1 nuclei gives 40.434.6=1.5Vs,, or Vg,
. T =3.8MeV. Forl=2 we have 47.+40.4=2.5V,,, or Vg,

54 [

42 oo

Potential Strength (MeV)
®

30

0 10 20 30 40 50 60 70 =2.6 MeV. So on averag&/s.,~3.2 MeV. In the fourth col-
. umn of Table IV, we list the value of 3.2 S for each of the
Atomic Mass Number A shells. The last column list¥;=V,—3.2L-S. For nuclei
Fig. 4. A graph of the Woods—Saxon potential strengty, minus the ~ With A>16 the values oV, are approximately the same,
pairing potential, 23/A MeV, vs atomic mass numbekx. 46.1+ 2.2 MeV.
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Thus the potential form of Eq11) fits the data fairly well, ‘?Electrgnic r:h’slil:dlobsielgel@csupomcfinfsl-edu | A model
; i wi ; ; ; P. B. Siegel and Mark Farrow-Reid, “A square-well potential model to
>106. . -
partlcu'?rly for nuc'&' WIthA ?‘6 Uf§tlr}g Otl’|11|y fIV? potentlall describe lambda-hypernuclei,” Am. J. Phys), 1016—-10171990.
para‘_me ers, on_e obtains a close it tor _e valence nucleor, goyig and J. TobochnikAn Introduction to Computer Simulation
binding energies for these 46 nuclery=1.3fm, a Methods(Addison—Wesley, Reading, MA, 1996
=0.5fm, V.=46.1+2.2MeV, V. =3.2MeV, andV, . 3J. FeaginQuantum Mechanics using Mathemati@pringer-Verlag, New
y V¢ » Vs-0 ’ pairing

=22/JAMeV. The lighter nuclei have a somewhat lower Yo'k 1994. . . .
value forV. of around 38.5 MeV “We found two articles on energy level calculations for alkalis and light
c . .

. . . . atoms in this journal: Jack R. Woodyard, “A Simple Approach for the
This simple mean field approach yields results close cajculation of Energy Levels of Light atoms,” Am. J. Phys0, 1231—

enough to the experimental data for students to apply the1238(1972; R. T. Poole, “Cohesive energy of the alkali metalspid.

shell model to the set of mirror nuclei listed in Table Ill. We 48, 536-538(1980.

should point out that the theoretical analysis of nuclear en-"The data for the energy levels in atoms were obtained from the NIST

ergy levels is a complicated problem. In particular, some of Alomic Spectroscopic ~Database, whose web address s http:
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REAL LEARNING

After all, what's a computer program except a construct of someone else’s mind? If ypu're
satisfied with that, well, go right ahead. But to me, real learning means inventing my own ways of
solving problems...ways that might not fit into prearranged software.
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