
Putting your heart into physics
P. B. Siegel
Physics Department, California State Polytechnic University Pomona, Pomona, California 91768

A. Urhausen, J. Sperber, and W. Kindermann
Institute for Sport and Preventative Medicine, University of Saarland, Saarbruecken D66041, Germany

~Received 22 April 2003; accepted 8 August 2003!

We describe techniques for measuring the time interval between successive heartbeats. This time
series data can be used in undergraduate physics classes for instruction in resonance phenomena,
scaling, and other methods of analysis including Fourier analysis and Poincare´ plots. Using methods
from physics on data from human physiology are of particular interest to life science students.
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I. INTRODUCTION

Over the past 30 years, research on heart rate variability
has studied which properties of heart rate control are impor-
tant in assessing the health and fitness of the cardiovascular
system in humans.1 The main measurement is the time be-
tween successive heartbeats. Measurements are taken over
time periods as short as a few minutes to as long as 24 hours,
and the resulting data are a series of times usually measured
to an accuracy of milliseconds. A number of articles have
been published in physics journals which apply methods
from nonlinear systems theory to the time series of the heart
rate time interval data.2–8 In this article we describe a num-
ber of experiments on heart rate variability which would
make good student projects and laboratory exercises for the
undergraduate physics curriculum.

Analyzing data from human physiology is of particular
interest to life science students,9 who are required to take
physics as part of their degree requirement. Although no
laws of physics are being investigated by the experiments
described here, the phenomena and analysis methods are
common to both the physical and biological sciences. The
analysis of a driven damped pendulum can be compared to
the response of the human heart when driven by controlled
breathing. The concepts of frequency, amplitude, phase shift
and resonance enter in both applications. The time interval
data can be used to teach average values and standard devia-
tions, which in this case have relevance to health and fitness.
For more advanced students, the time interval data can be
used to introduce spectral analysis, Poincare´ plots, and the
scaling properties of heart rate control. For physics majors,
building the hardware for data collection and writing the
software for data analysis make good special projects or up-
per division laboratory activities.

An advantage of time interval data is that accurate data
can be obtained quickly. With the advent of the heart rate
monitor for recreational athletes, research quality time inter-
val data can be measured easily and with minimal expense.
We start by describing techniques for measuring the heart-
beat interval time. We then discuss some experiments that
can be used in a physics laboratory class or as a physics
project.

II. DATA COLLECTION

An electrocardiogram is a measurement of the voltage be-
tween two particular points on the chest which bracket the

heart. The voltage as a function of time takes on the form
shown in Fig. 1. A voltage pulse is produced whenever a
heartbeat occurs. The large spike is called theR peak and is
a good reference point to define the time of the heartbeat.
The time from oneR peak to the nextR peak, an interspike
interval, is a good measure of the time between successive
heartbeats, and is referred as theRR-interval. We are inter-
ested in theRR-interval times for many successive heart-
beats. Measuring these times to an accuracy of one millisec-
ond is sufficient for all applications in which the subject is at
rest. TheRR-interval times can be measured from an electro-
cardiogram or by using a heart monitor chest strap. We de-
scribe both methods below.

An electrocardiogram can be obtained by amplifying the
voltage from electrodes placed across the heart. The ampli-
fied signal can be used as input into an analog-to-digital card
or sound board.10 From the digitized signal, the time differ-
ence between successiveR peaks can be measured. Sampling
rates greater than 1000 Hz will result in an accuracy of at
least one millisecond. If the signal is sampled less than 1000
Hz, parabolic interpolation can be use to determine the time
of the R peak between sampled data points. A disadvantage
of this method is that much memory is used to store the ECG
signal. If only theRR times are of interest, one could set a
trigger in the software to measure the time between theR
peaks.

A heart rate monitor belt is probably the easiest way to
measureRR-interval times. The belt is worn around the chest
and sends an electromagnetic signal every time anR peak is
detected. The heart rate monitor~belt plus receiver watch! is
used to measure one’s heart rate while exercising, and is
common gear for runners of all levels. A watch detects the
signal and measures the heart rate. There are watches avail-
able which measure theRR times directly.11 The RR-interval
times are downloaded from the watch to a computer for data
analysis.

TheRR-interval times also can be obtained from the moni-
tor belt by winding a coil of wire around the belt as shown in
Fig. 2. The pick-up coil in Fig. 2 has 80 turns of wire. For the
particular monitor we used,12 the transmission signal is a 5
kHz pulse which lasts for 7 milliseconds. The 80 turns of
wire produced a peak-to-peak voltage of 0.8 volts. TheRR-
interval times are obtained by measuring the time between
the start of one 5 kHz signal and the next 5 kHz signal. The
measurement is most easily done by using a voltage com-
parator chip. The signal from the pick-up coil is used as input
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to the comparator chip. Using a 5 volt bias, the output of the
comparator serves as a digital input to a TTL port. We have
used two different devices to measure the time between sig-
nals which can be used as digital input to a micro-controller
~HC11! or as input via the parallel port in a personal com-
puter~laptop!. The use of the timer in the HC11 or personal
computer is described in the Appendix. Of the two methods,
the micro-controller has the advantage that it is dedicated,
small, and portable. Interfacing with a computer has the ad-
vantage that it is very inexpensive, and thus one can build
enough setups for an entire laboratory class with little cost.

We have compared the accuracy of measuring with the
pickup loop to the heart rate monitor watch and have ob-
tained identical results for both systems. We further tested
the accuracy of measuring the same heartbeats with two dif-
ferent chest straps on one subject. The measured times
agreed within 0.15%, with the errors being random. Thus, we
estimate the accuracy of theRR-interval measurement to be
around 0.15% using heart rate monitor straps. The manufac-
turer claims an accuracy of 1 ms. BecauseRR times are
usually around 1000 ms, this claim implies a percent uncer-
tainty of 0.1%. An uncertainty of 1 ms is the accuracy used
by researchers in physiology and sports medicine. Thus, the
methods described here also offer the possibility for interdis-
ciplinary projects with biology and kinesiology. As computer
chip technology advances, the measurement ofRR-interval
times will likely become easier and less expensive.

III. DATA ANALYSIS AND APPLICATIONS

Data can be collected while the subject is at rest or exer-
cising. For a physics classroom experiment taking data at
rest is more practical. Such data are produced at a rate of

around 60 data points per minute. The data form a series of
times, which can be used to introduce students to a variety of
analysis methods.

Some basic knowledge of heart rate control helps in the
interpretation of the data and experimental design. At rest,
either lying or standing, the autonomic nervous system regu-
lates the heart rate. The autonomic nervous system has two
different control influences known as sympathetic and para-
sympathetic. Sympathetic nerve activity increases, while
parasympathetic nerve activity decreases heart rate. The re-
lation between the resting heart rateB, the parasympathetic
factorn, the sympathetic factorm, and the basic heart rateB0
is modeled as13

B5B0mn5B0~11S!~12P!. ~1!

We have writtenm5(11S) andn5(12P), whereS refers
to the sympathetic activity andP to the parasympathetic ac-
tivity. If both sympathetic and parasympathetic control is
blocked, the basic rateB0 for most people is between 70 and
110 beats/min. In the lying position, the sympathetic activity
is usually small (0,S,0.1), the parasympathetic activity is
large (0.1,P,0.6), and the heart rateB is as low as it can
be without medication. In the standing position, the sympa-
thetic activityS is increased, the parasympathetic activityP
is reduced, and the heart rate increases. The particular bal-
ance of sympathetic and parasympathetic activity in lying
and standing varies among individuals and depends upon
age, fitness, health, genetics and other factors.

There are many factors that affect the variability of the
RR-intervals. Two important influences take place on two
different time scales: variations with periods less than around
6 seconds, and periods longer than 10 seconds.1

~a! Short time scale changes, from one beat to the next, are
caused primarily by changes in breathing. The dynam-
ics are relatively simple. When one inhales, the heart
rate B increases; conversely, the rate decreases when
one exhales. The heart rate is thus driven at the breath-
ing frequency. For breathing frequencies greater than
10 breaths/min, the ‘‘driving force’’ is related to the
parasympathetic activityP.

~b! Changes longer than 1 or 2 breathing cycles are caused
by many factors, and the dynamics can be complicated.
The average heart rate wanders, and sometimes slow
oscillations are produced. Oscillations with a period of
around 15 to 25 s often occur. It is believed that these
oscillations are related to variations in blood pressure,
although the exact mechanisms are not completely
understood.1 The effect is strongest in the standing po-
sition and seems to depend on both the sympathetic and
parasympathetic activity. We will refer to these oscilla-
tions as low frequency oscillations. In the literature,
they are often called Mayer waves.14

The dynamics of both time regimes are of interest to stu-
dents. By controlling the rate and amplitude of breathing, the
response of a driven system can be investigated. Students
can measure the resulting amplitude and phase of the heart
rate variations for different breathing frequencies. For the
longer time variations, students can see the usefulness of a
Poincare´ plot to separate breathing from the long-term dy-
namics. We demonstrate features of the two time scales and
the differences in lying versus standing in Fig. 3. The subject
changes posture from lying to standing. In the lying part of

Fig. 1. An electrocardiogram signal, which is a plot of the voltage across the
heart as function of time. The large positive peak is referred to as theRpeak.
The time between heartbeats is measured as the time betweenR peaks,t( i ),
and is referred to as theRR interval.

Fig. 2. Coil of wire that is placed around the heart rate monitor to pick up
the transmitted signal. With 80 turns of wire, the resulting signal has a
peak-to-peak voltage of 0.8 V.
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Fig. 3, the short-term variations in the heart rate caused by
breathing due to the strong parasympathetic activity are
clearly seen. In the standing part of Fig. 3, the short-term
oscillations due to breathing are essentially gone, but low
frequency oscillations with a period of around 10 heartbeats
are present. We note that heart rate control is a subject of
current research, and the interpretation of the data may
change as further experiments are done. Interested students
should consult sources on human physiology for a more de-
tailed treatment.1,24

In the laboratory experiments described below, students
collect data through the parallel port of a personal computer
as explained in the Appendix. TheRR times in milliseconds
are displayed on the screen in real time. There is a switch
option in the software which causes a beep for every heart-
beat. This option allows the students to synchronize breath-
ing and heart rate. After all theRR times are recorded, stu-
dents can view the data or save the data as text to import it
into a spreadsheet program. Software has been written to
assist the students in their data analysis.

IV. SIMPLE STATISTICAL CALCULATIONS

The RR-interval data are well suited for instructing stu-
dents in simple statistical calculations that come with spread-
sheet programs and data analysis software, for example, av-
erages and standard deviations. To save time, we have
included programs in the data acquisition software to per-
form averages, standard deviations, discrete Fourier trans-
form, and fast Fourier transforms~FFT!. The students view
the data graphically to determine the range of beat numbers
that are appropriate for the calculations. The data were of
particular interest to biology students who participated in
data analysis workshops in which averages, standard devia-
tion, Fourier analysis, and analysis of variance~ANOVA !
were taught using theRR-interval data.

Data for statistical calculations are best taken in the lying
or reclined position. In the lying position the heart rate does
not wander as much as while standing. The data vary about a
fairly constant average value, with the beat-to-beat variation
due primarily to breathing. The coefficient of variation
~COV! is defined as the ratio of the standard deviation di-
vided by the average. Values of the COV usually are between
2% and 10%. In general, the COV decreases with age, and a
large COV often is associated with fitness and overall good
health.15

V. RESPONSE OF A DRIVEN SYSTEM

The damped driven pendulum and RLC circuit are sys-
tems that often are studied in undergraduate physics labora-
tories to examine the response of a driven system. Although
heart rate control is more complicated than these two physi-
cal systems, many of the terms and basic properties are simi-
lar. The heart at rest has a steady state heart rate, a low
frequency natural oscillation~Mayer waves!, and can be
driven by a periodic mechanism~breathing!. Students can
perform similar experiments on the heart as they have on the
pendulum and RLC circuit by driving the heart with different
breathing frequencies and driving forces and measuring the
response. Periodic breathing results in a periodic heart rate
response after transients have settled out. If one breathes in
and out smoothly, theRR-interval times oscillate in a smooth
manner with a near sinusoidal shape. This phenomenon is
called respiratory sinus arrhythmia~RSA!, and the oscilla-
tions are quantified by the respiratory sinus arrhythmia am-
plitude.

The RSA amplitude is roughly proportional to the volume
of air inhaled, the tidal volume.16 If the tidal volume is not
measured, the students can qualitatively verify that the RSA
amplitude increases with increased tidal volume. In Fig. 4 we
show data taken while the subject was standing and breath-
ing at 8 beats/breath. The first five breaths are shallow
breathing, and the next five are deeper breathing. It is clear
that a larger RSA amplitude is a result of deeper breathing, or
driving force.

The frequency response of the heart rate can be examined
by having the subject breathe at different frequencies and
measuring the resulting RSA amplitudes and relative
phases.17,18 The heart at rest behaves quite differently in the
lying compared to the standing position.19,20 It is most inter-
esting to perform the experiment in the standing position,
where the RSA amplitude has a much stronger frequency
dependence. The subject should try to breath comfortably at
each frequency. Because the RSA amplitude depends on the
tidal volume, we should normalize the RSA amplitude for
the tidal volume at each frequency. We find that the average
adult has a tidal volume of about 1000 ml at slow breathing
rates~4 breaths/min! and a tidal volume of around 500 ml at
14 breaths/min. We could use these values and linearly inter-
polate to find the intermediate breathing frequencies. How-
ever such accuracy is not necessary for an introductory phys-
ics experiment. Because the increase in amplitude at the

Fig. 3. Plot of theRR-interval versus beat number as a subject changes
posture from lying to standing. For beat numbers 1000–1050 the subject is
lying, and for beat numbers 1100 to 1200 the subject is standing.

Fig. 4. Plot of theRR-interval versus beat number for a subject breathing
eight heartbeats for every breath. The first five breaths are shallow breathing
~beat numbers 40–80!, and the next five breaths are deep breathing~beat
numbers 80–120!.
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lower frequencies is significantly more than a factor of 2@see
Fig. 5~a!#, it is not due to only increased tidal volume.

The RSA amplitude is measured by displaying theRR-
interval data graphically on the computer display. For breath-
ing frequencies slower than 10 breaths/min, the oscillations
are clearly visible. The students simply subtract the shortest
RR-interval time from the longestRRtime in each cycle and
divide by 2. An average over a few cycles gives a fairly
accurate RSA amplitude. For breathing frequencies greater
than 10 breaths/min, the oscillations are sometimes small in
the standing position, but usually a rough RSA amplitude can
be obtained. Another option is to perform a discrete Fourier
transform and use the amplitude of the peak at the breathing
frequency for the RSA amplitude.

The phase angle between the breathing and heart rate can
be estimated by noting the beat number at maximum lung
volume ~or any other point in the breathing cycle!. The stu-
dents can obtain the phase angle from the location of these
beat numbers within the RSA cycle. In Fig. 5 we plot the
phase angle and amplitude for a standing subject. We have
taken positive phase to mean that breathing oscillations lead
RSA oscillations.

The frequency response resembles that of a damped driven
oscillator, with characteristics of a resonance phenomena.17

In Fig. 5 the amplitude has a maximum and the phase passes
though 90 degrees at a breathing rate of around five breaths/
min or a frequency of around 0.08 cycles/s. If the students
have time to observe low frequency oscillations~Mayer
waves!, the frequency of this natural oscillation also will be
close to 0.08 cycles/s. Although the data suggest a resonance
phenomena is occurring, further investigation is necessary
for a definitive interpretation. The phase angle being mea-
sured is between breathing and RSA oscillations. There is

another phase angle between the blood pressure and RSA
oscillations, which might be more relevant for low frequency
resonance. Although the amplitude rises quickly from high to
low breathing frequencies, it does not drop as quickly at low
frequencies. Some physiologists think a resonance phenom-
ena is occurring,17 while others believe that the amplitude
increase is partly caused by the increased response time
when breathing slowly.21,22

We also can measure the response of the heart to a step
input; that is, have the subject breath in such a manner that
the tidal volume is a step function of time.21 This is accom-
plished by breathing in quickly, holding one’s breath for a
certain number of heartbeats, breathing out quickly and then
holding one’s breath for the same number of heartbeats. We
plot in Fig. 6 the response for a standing subject and breath
holding for 10 heartbeats. It is interesting to observe that the
steady state response is periodic, and that breathing in has
the biggest beat-to-beat effect.

For more advanced students, the step-function input dem-
onstrates that the response can be nonlinear. In Fig. 6 it can
be seen that the response to a quick inhale is not equal to the
negative of the response of a quick exhale. The nonlinearity
also can be demonstrated by comparing the Fourier spectrum
of the input and output. A step function only has odd spectral
components and is shown in Fig. 7~a!. The response function
shown in Fig. 7~b! has a large amplitude at twice the input
frequency, a frequency not present initially. In both Figs. 7~a!
and 7~b!, a discrete Fourier transform was performed over
five breathing periods. If one breathes smoothly, however,
the response is fairly linear. An example is given in Sec. VII.

VI. POINCARÉ PLOTS

A Poincaréplot is a plot in which one or more variables
are projected out of the dynamics. We can project out a pe-
riodic variable by plotting the other variables every time the
former variable obtains a particular value. The classic ex-
ample is the damped pendulum driven sinusoidally. The
angle of the pendulum,u, angular velocity,v, and the phase
of the driving force are used to describe the motion. A phase
space plot ofu versusv for a particular phase of the driving
force produces a Poincare´ plot which demonstrates the pe-
riod doubling route to chaos and strange attractors.23

For theRR-interval data, a similar approach can be used to
project out much of the effect that breathing has on the sys-
tem. To accomplish this, the subject needs to breathe syn-
chronously with the heart rate. The subject takes a complete

Fig. 5. The frequency response of the heart rate as a function of the breath-
ing rate for a subject in the standing position:~a! the respiratory sinus the
arrhythmia amplitude and~b! the phase angle with respect to the breathing
frequency.

Fig. 6. Heart rate response to step function breathing. The subject inhales
quickly, holds his breath for 10 heartbeats, exhales quickly, and holds his
breath for 10 heartbeats.
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breath everyn heartbeats, and should take each breath the
same way. We then measure one or more variables for every
nth heartbeat. One variable to consider is everynth RR-
interval time. These times are at the same phase of the driv-
ing force ~breathing!. In Fig. 8 we show a plot forn54 for
a standing subject. In the figure, oscillations occurring every
three points can be seen, particularly for~beat numbers!/4
between 130 and 150. These low frequency oscillations, with
a period of 12 heartbeats, are presumed to be due to varia-
tions in the blood pressure~Mayer waves!. To produce a
two-dimensional plot, we can plot the blood pressure versus
the RR-interval time at everynth heartbeat. Although these
are not phase-space variables, a plot of system parameters
that depend on each other at a constant phase of an external
driving force is analogous to a Poincare´ plot for mechanical
systems.

VII. SPECTRAL ANALYSIS

Spectral analysis is a common tool in physics and can be
applied toRR-interval data. In practice it is used to separate
out the high frequency beat-to-beat variations due to breath-
ing from the low frequency variations due to interactions
with the rest of the body.24 TheRR-interval times serve as an
interesting data set for instruction in Fourier transform tech-
niques.

To observe the low frequency oscillations, it is best to take
data with the subject in the standing position breathing at a
fixed rate faster than 10 breaths/min so that the higher fre-
quency peak due to breathing does not lie in the low fre-
quency range.25 A common practice in exercise science is to
plot the power density spectrum of the heart rate variability.
The power spectral density is proportional to the absolute
square of the FFT amplitude. We plot the spectrum in Figs.
9~a! ~lying! and 9~b! ~standing! for which the subject is
breathing with a frequency of 12 breaths/min, or 0.2 Hz.
Note the narrow peak at 0.2 Hz in both spectra. The broad
low frequency peak centered at 0.07 Hz is significantly larger
in the standing position.

The power density spectrum plotted in Figs. 9~a! and 9~b!
is calculated using a simple FFT with 256 points. The low
frequency peak is not always clean and narrow, and it is
believed that the amplitude of this peak is related to sympa-
thetic activity.26 Because the low frequency peak often is
difficult to observe, different methods involving filtering and
autoregression have been developed to assist the analysis.
Although we usually limit our analysis to an FFT of the raw

Fig. 7. Fourier spectrum of heart rate for step function breathing:~a! the
spectrum of the breathing~step function! and ~b! the spectrum of the heart
rate response.

Fig. 8. Plot of theRR-interval for a subject breathing one breath every four
heartbeats while standing. TheRR-interval is plotted for every fourth heart-
beat.

Fig. 9. Fourier spectrum of theRR-interval times for~a! a subject lying and
~b! standing. The subject is breathing at 12 breaths/min in both cases. LF
and HF refer to the low and high frequency bands used by exercise scien-
tists. The FFT is calculated using 256 data points.
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data, these advanced time series analysis methods might be
of interest to physics or engineering students.

An interesting application of spectral analysis is the output
from breathing with a particular spectral profile. A simple
breathing pattern for which the oxygen intake is constant is
to breathe one slow deep breath followed by two breaths that
are twice as fast and half as deep. In Fig. 10, we show data
for a subject breathing the following repeating pattern: first
one deep breath lasting 16 heartbeats, then two breaths, each
lasting eight heartbeats each with half the depth as the first
deep breath. The spectrum corresponding to a sinusoidal
function of amplitudeA, period T, followed by two sinu-
soidal functions each of amplitudeA/2, periodT/2, is shown
in Fig. 10~a!. The spectrum of theRR-interval time series for
a subject breathing in this way is shown in Fig. 10~b!. In
both Figs. 10~a! and 10~b!, a discrete Fourier transform was
performed over five cycles. For each peak in the breathing
spectrum, there is a corresponding peak in the heart rate
spectrum. The relative response amplitudes correspond to
that of Fig. 5~a!, indicating a fairly linear response.

VIII. SCALING AND NONLINEAR ANALYSES

Most of the research done by physicists in heart rate vari-
ability has been done in the area of nonlinear dynamics and
chaos. Physicists have contributed to the development of
mathematical methods using correlations, the correlation di-
mension, fractal dimension, detrended fluctuation analysis,5

wavelets,6 entropy,8 for example, to obtain a better under-
standing of the underlying complex dynamics of heart rate
control. Sometimes large data sets are needed for these cal-
culations, and are best collected while the subject sleeps
through the night. For a student exercise, 4000 data points
are sufficient to observe interesting results and can be col-

lected in a little more than 1 hour. Data collection can be
done before class~for example, during a lecture! and ana-
lyzed later.

The general approach is to extract a parameterV from N
heartbeats that is a measure of variability. One then examines
the properties of this parameter for largeN. In particular, a
power law relationship often exists:

VaNb. ~2!

It is beyond the scope of this article to discuss all the meth-
ods in-current use, and the interested reader is directed to the
research articles.4–8 Here we discuss two simple applica-
tions, which can be used with 1 hour worth of data.

It has been observed27 that heart rate variability data ex-
hibit 1/f noise scaling. The students can demonstrate this
scaling by taking a Fourier transform of theRR-interval data.
Such a transform is best accomplished from a stationary time
series. We first take the difference of successiveRR-interval
times,d i5t i 112t i , and then Fourier transformd i . In Fig.
11 we plot the discrete Fourier transform ofd i for 4000 heart
beats while a subject was sitting. Figure 11 is a log–log plot
of the average Fourier amplitude versus the periodT51/f .
The interesting observation is the power law relation be-
tween the amplitude and period~frequency!. It is believed
that data from healthy hearts have a power law relation be-
tween the amplitude and the frequency. When more data is
taken, the linearity of the log–log plot of Fig. 11 holds up to
periods as long as 24 hours.4 Unhealthy heart rate control
produces a kink in the log–log plot.4 The meaning of the
power exponent,b, using a Fourier or wavelet basis6 is a
topic of current research.

The second application is analogous to experiments done
to demonstrate the statistics of nuclear counting. A standard
method for showing the Poisson statistics of nuclear count-
ing is to record data many times for a specific counting time.
The mean number of counts,N, and the standard deviation,
s, are calculated from the data. The students then determine
if s is equal to the square root ofN within the limits of the
experiment. We can also repeat the experiment with different
values forN by changing the counting time or the source-
detector geometry. A graph of logN versus logs should pro-
duce a straight line with slope 1/2, demonstrating that the
variability scales asN1/2 for radiation counting.

Fig. 10. ~a! Fourier spectrum of breathing;~b! RR-interval for a subject
breathing a deep breath lasting 16 heartbeats followed by two shallower
breaths of eight heartbeats each.

Fig. 11. A discrete Fourier transform of theRR-interval times for a subject
lying and breathing normally. 4000 data points were used in the transform.
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A similar analysis can be performed with theRR-interval
times. From a series ofRR-interval times, we can calculate
the average number of heartbeats,N, and its standard devia-
tion, s, for a particular counting timeTc . For example, take
Tc equal to 1 minute. One hour of data gives 60 numbers
corresponding to the number of heartbeats for each of the 60
1 minute intervals. From these 60 numbers, we can calculate
the average and standard deviation. We then repeat the analy-
sis using the same data, with a different counting time, and
consequently a differentN and s. In Fig. 12 we plot logN
versus logs for 1 hour ofRR-interval data. We have chosen
our shortest timeTc to be 20 s, because this duration is just
above the period for low frequency oscillations. ForTc

520 s, 1 hour of data gives 180 counting periods and thus
good statistics. We have chosen the longest timeTc to be 250
s, which givesN 250. ForTc5250 s, 1 hour of data gives 14
counting intervals and the statistics become marginal. As
seen in the example of Fig. 12, a remarkable scaling relation
results with a slope 0.75. We find that usually power law
scaling occurs, with slopes varying between 0.6 and 0.9. A
slope of 1/2 results from random processes, and a slope of 1
occurs if the variability is proportional toN. The heartbeat
data lie somewhere in between these two values. The signifi-
cance of the value of the scaling exponent~slope! to health
and/or fitness is not known.

A common technique in the analysis of nonlinear systems
is to plot a return map from a time series. The classic ex-
ample is that of a dripping faucet28,29 in which a plot of t i

versust i 11 uncovers period doubling and a strange attractor
when the faucet is dripping chaotically. The same approach
has been applied toRR-interval data. Usually the difference
d i5t i 112t i is plotted versusd i 1n wheren is some delay.
Because the heart is a complex system with many factors
affecting theRR-interval times, a return map for a healthy
subject generally produces a blob of points. Even if the sub-
ject breathes one breath everyn heartbeats, a plot ofd i ver-
susd i 1n usually does not reveal any simple underlying dy-
namics. For subjects with heart problems, on the other hand,
a return map can yield plots of distinctively different
shapes.30 Research is ongoing on how to make the technique
of return maps more useful in the analysis of heart rate

variability.31 In the student lab, comparing the return map
from RR-interval data to that of simpler systems would be an
instructive and interesting exercise.

IX. HEART-RATE VARIABILITY AFTER EXERCISE

There are numerous examples in physics and biology for
which a system decays~or grows! exponentially. Immedi-
ately after exercise the heart rate drops and after a while
reaches steady state. It is tempting to imagine that this decay
is exponential, but there is no obvious reason to believe that
the rate of change of theRR-interval times is proportional to
the difference between theRR time and its value in the
steady state. Exponential decay might be a good approxima-
tion for certain time intervals, but it is found that the decay is
not exactly exponential.32

Instead of examining the time change of only one variable,
it is better to consider how two system parameters vary as
the body changes from one state to another. This approach is
used in thermodynamics, in which the relation of macro-
scopic parameters gives information about the process that
the system is undergoing. For example, if a gas undergoes a
quasistatic process, aP–V plot can be used to determine if
the process is isobaric, isometric, isothermal, adiabatic, or is
more complicated. For the heart, the average heart rate~or
RR-interval time! and its variability are good parameters to
plot in order to identify the heart rate control process that is
taking place.

As an example, in Fig. 13 we plot the average heart rate as
a function of the respiratory sinus arrhythmia amplitude
~RSA! as the subject cools after exercise. The RSA is ap-
proximately proportional to the parasympathetic activity.
Thus, for processes dominated by parasympathetic change,
the heart rate will decrease~or increase! and the RSA will
increase~or decrease! in concert. In Fig. 13, the first 2 min-
utes of the cool down and the last 45 minutes have this
feature. The last stage, from 15 minutes to 1 hour, takes place
very slowly, and can be classified as a quasistatic process. To
first order inP, the RSA amplitude equalskP, wherek is a
constant. Equation~1! becomesB5mB0(12(RSA)/k). Be-
cause the process during the final 45 minutes is approxi-
mately a straight line on the graph, this stage of the cooling

Fig. 12. A log–log graph of the standard deviations versusN, the average
number of heartbeats.

Fig. 13. A plot of the heart rate in beats/min versus the respiratory sinus
arrhythmia amplitude as the subject cools down in the lying position after
exercise. The subject is breathing at 12 breaths/min. Time was started (t
50 min) a few minutes after the exercise was completed.

330 330Am. J. Phys., Vol. 72, No. 3, March 2004 Siegelet al.
 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

134.71.247.199 On: Wed, 15 Apr 2015 09:43:55



is isosympathetic~that is,m is constant!. We can do a linear
fit to this stage to obtain the physiological parameters
mB0 and P from the intercept and slope. Life science stu-
dents may find it interesting that the same methods of analy-
sis used in physical systems can be applied to biological
systems.

X. SUMMARY

We have described several methods that can be applied to
heart rate data. In general, we find that students are quite
interested in heart rate dynamics, because it pertains to their
health and fitness. Bringing it into the physics program can
increase enthusiasm and interest, and allow the students to
literally put their heart into physics.
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APPENDIX

The RR-interval times can be measured quite easily using
a heart rate monitor belt. The heart-rate belt is worn around
the chest and emits a signal whenever theR peak of the EKG
signal is detected. The time from the start of one transmitted
signal to the start of the next signal is the time between the
successive heartbeats. The Polar heart rate monitor belt that
we used transmits a 5 kHz signal which lasts 2 ms~35
cycles!. The signal can be detected by placing a coil of wire
around the center of the belt as shown in Fig. 2. Using a coil
with 80 turns produces an electrical signal that has a peak-
to-peak voltage of 0.8 volts. To obtain a clean digital signal
~TTL!, we connect the coil to the input of a comparator chip.
The circuit is shown in Fig. 14. For the Motorola LM334
comparator chip, the voltage on pin 2 is compared to the
reference voltage on pin 3. Dividing 5 volts by a 15 000V
and 556V resistors in series produces a reference voltage of

0.1 volts for pin 3. Because the signal is very clean, the start
of the first cycle of the transmitted wave triggers a 5 volt
output on pin 7.

The time between successive heartbeats can be measured
by sampling the output voltage on pin 7 of the chip. When
the voltage jumps to 5 volts, a timer is read. After a pause of
greater than 7 ms, the transmitted signal has finished and the
voltage is back to zero. When the voltage jumps to 5 V
again, the timer is read. This process is repeated, and the
differences in the times are theRR-intervals. One can use the
timer on a microprocessor or the system clock on a personal
computer as a timer.

We use the parallel port to interface to a personal com-
puter. The chip ground is connected to pin 24 on the parallel
port, and the chip output from pin 7 is connected to pin 10 on
the parallel port. Use of the PC timer is described in Ref. 33.
The RR-interval times are stored in an array and then saved
on disk after the measurements have ended.

When using the HC11, we use the input capture interrupt
to detect the signal. We use interrupt service routines to de-
tect the signal, read the timer, and update the timer overflow.
The RR-interval times are stored in an array and transferred
to a personal computer via the serial port after the measure-
ments are made.
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