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The commutator of two operators, defined as �Â , B̂�� ÂB̂

− B̂Â, plays an important role in quantum mechanics. Two
relationships derived in nearly all undergraduate texts are

�A�B �
1
2 �����Â,B̂����� , �1�

and the time evolution of the expectation value of an observ-
able A

iq
d���Â���

dt
= ����Â,Ĥ���� + iq���	 �Â

�t

��� , �2�

where ��� is the state of the system, Ĥ is the Hamiltonian

operator, and �A is the uncertainty in A. The operators Â and

B̂ correspond to the observables A and B. The commutator
also enters in the canonical quantization procedure and an-

gular momentum algebra: �Ĵi , Ĵj�= i�ijkqĴk. The Ĵ operators
can be orbital, spin, or total angular momentum, and the
commutation relations derive from the generators of SU�2�.

In spite of the central role that commutation relations play
in quantum mechanics, they are somewhat abstract and are
usually not related to an experimental measurement. The pur-
pose of this paper is to point out a special case for which the
commutator is proportional to a measurable quantity: the
probability of a change of state for sequential measurements.
Because the commutator is the difference in the ordering of
the operators of two observables, it might be suspected that
successive measurements of the two observables are some-
how related to the commutator. To understand such a pos-
sible relation, we need to determine the relevant quantities
for successive measurements and the information contained
in the commutator.1,2 For our discussion, let the outcomes of
observable A be ai, with corresponding states ��i�, and the
outcomes of observable B be bi, with corresponding states
��i�. Suppose the system starts in the pure state ��1�. The
probability P1 that the system is found in a different state
after B is measured is given by

P1 = �
i�1,k

n

���i��k���k��1��2 = �
i�1,k

n

�Cik�2, �3�

where Cik���i ��k���k ��1�, and n is the dimension of the
state space. The off-diagonal matrix elements of the commu-

tator �Â , B̂�i1 in the �� j� basis are given by

��i�ÂB̂ − B̂Â��1� = �ai − a1���i�B̂��1�

= �ai − a1��
k

n

bk��i��k���k��1�

= �ai − a1��
k

n

bkCik. �4�

It is interesting that P1 and �Â , B̂�i1 depend on the exact same
quantities, Cik, where 2� i�n and 1�k�n. However, the
dependencies are fundamentally different. The commutator
matrix elements are a coherent sum of the Cik weighted by
the eigenvalues bk, whereas only the magnitudes of the Cik
enter in the sum for P1. The unitarity of the ��i ��k� transfor-
mation matrix places additional constraints on the
Cik :�k��i ��k���k ��1�=�kCik=0 for all i�1. Thus, there are
�n−1� commutator equations and �n−1� equations from uni-
tarity resulting in 2�n−1� equations containing the complex
Cik. Because, in general, there are n�n−1� different Cik, for
values of n�2, the Cik �and also P1� cannot be uniquely

determined from a knowledge of �Â , B̂�i1.
For n=2 the situation is special, because there is only one

independent off-diagonal element, C21. The constraints im-
posed on a two-state system result in a direct connection
between the commutator and the experimental quantity, P1.
In this case, P1= ���2 ��1���1 ��1��2+ ���2 ��2���2 ��1��2. From
unitarity, ��2 ��1���1 ��1�=−��2 ��2���2 ��1�, and hence

P1 = 2���2��1���1��1��2. �5�

For a two-state system, the commutator, being anti-

Hermitian �if Â and B̂ are Hermitian�, has only one indepen-
dent element

��2��Â,B̂���1�

= �a2 − a1���2�B̂��1�

= �a2 − a1����2��1�b1��1��1� + ��2��2�b2��2��1��

= �a2 − a1��b1 − b2���2��1���1��1� . �6�

We combine Eqs. �5� and �6� and obtain

P1 =
2

�a1 − a2�2�b1 − b2�2 ���1��Â,B̂���2��2. �7�

Note that P1= P2, because Eq. �7� is symmetric upon inter-
change of 1 and 2. Thus, the probability that the system
changes its state due to the measurement B is proportional to

1183 1183Am. J. Phys. 73 �12�, December 2005 http://aapt.org/ajp © 2005 American Association of Physics Teachers

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

134.71.247.199 On: Mon, 27 Oct 2014 10:32:52



the absolute square of the commutator matrix element

��1��Â , B̂���2�.
The calculation is symmetric in A and B, so we also have

���1��Â,B̂���2��2 =
�a1 − a2�2�b1 − b2�2

2 �
k

���1��k�

	��k��2��2. �8�

If the commutator is zero, then a measurement of B does
not change the outcome of a measurement of A. A larger
value for the commutator results in a higher probability that
the system will undergo a state change if B is measured.
Because probabilities are less than or equal to one, we have
an upper bound for the commutator,

���1��Â,B̂���2�� �
��a1 − a2����b1 − b2��

�2
, �9�

which is similar to Eq. �1�, the generalized uncertainty rela-
tion. Equation �1� is useful for a state that is not an eigenstate

of A or B, whereas Eq. �9� holds for eigenstates of A �or B�.
Equations �7�–�9� are applicable only for a two-state sys-

tem. However, the two state system is a classic pedagogical
example in many undergraduate texts.1 The Stern-Gerlach
experiment and magnetic resonance for a spin-1 /2 particle
are common examples. The connection between the commu-
tator and sequential measurements is yet another interesting
aspect of two-state systems.

a�Electronic mail: pbsiegel@csupomona.edu
1David J. Griffiths, Introduction to Quantum Mechanics, 2nd ed. �Pearson
Prentice-Hall, Upper Saddle River, NJ, 2005�. The calculation presented
here was motivated by Problem 3.27, p. 125, on sequential measure-
ments.

2For a good summary of measurement theory in quantum mechanics, see
Max Jammer, The Philosophy of Quantum Mechanics �John Wiley &
Sons, New York, 1974�.
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In 1995, Romer1 wrote an inquiry regarding the momen-
tum and energy flow of electromagnetic systems with par-
ticular reference to hidden momentum. The responses2 to the
inquiry, as well as earlier related work,3 touched on conser-
vation of energy, linear momentum, and angular momentum.
However, none discuss what I believe is the crux of the mat-
ter, the conservation law associated with the invariance of
classical electrodynamics under proper Lorentz transforma-
tion, which implies the constant velocity of the system center
of energy.

In this connection, it was pointed out recently4 that the
application of external forces Fext,i to the charged particles of
classical electron theory leads to the relation

� �Fext,i · vi�ri =
d�UX� �

dt
− c2P , �1�

where U is the total �mechanical and electromagnetic� sys-

tem energy, P is the system momentum, and X� is the dis-
placement of the system center of energy. This relation is
related to the continuous flow of energy in space and takes
into account the fact that the spatial location where energy is
introduced is relevant for relativistic systems. The relation
also is relevant for understanding what is termed “hidden
momentum.”

Both Romer1 and Griffiths5 have given specific examples
that are said to involve “hidden momentum.” In these mod-
els, there is the flow of energy in the form of particle kinetic
energy �Griffiths� or electromagnetic flux �Romer� which is

maintained by forces that are external to the electromagnetic
system whose energy and momentum is discussed. �The fact
that the external force is supposed to arise from an electric
field in Griffiths’ example is irrelevant because the electro-
magnetic field is not included in energy or momentum cal-

culations.� The energy U and center of energy X� of the elec-
tromagnetic system do not change in these models,

d�UX� � /dt=0. Therefore, from Eq. �1�, the momentum P
arises from the energy flow provided by the external forces
Fext,i. It is the putative return flow of energy associated with
the external forces that is identified as the “hidden mechani-
cal momentum” in Romer’s example; it is the mechanical
energy flow itself that is identified as “hidden mechanical
momentum” in Griffiths’ model.

The models of Romer and Griffiths are analogous to the
problem introduced by Taylor and Wheeler,6 where a con-
veyor belt moves energy from one end of a platform to the
other. An energy flow must have an associated momentum
flow, and also a change in the location of a center of energy.
In the Taylor and Wheeler problem, the backflow of energy
required to maintain the center of energy of the described
system is provided by the backward motion of the platform
on which the conveyer belt is mounted. The hidden momen-
tum models of Romer and Griffiths do not make explicit the
return energy-flow mechanisms, and therefore we cannot tell
how the extended system will behave. “Hidden momentum”
is an ambiguous term, which simply serves to excuse us from
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describing the full energy-flow relations that are crucial to
the behavior of a relativistic system.

1R. H. Romer, “Electromagnetic field momentum,” Am. J. Phys. 63, 777–
779 �1995�.

2E. Comay, “Exposing ‘hidden momentum,’” Am. J. Phys. 64, 1028–
1034 �1996�; V. Hnizdo, “Hidden momentum and the electromagnetic
mass of a charge and current carrying body,” ibid. 65, 55–65 �1997�;
“Hidden momentum of a relativistic fluid carrying current in an external
electric field,” ibid. 65, 92–94 �1997�; “Hidden mechanical momentum
and the field momentum in stationary electromagnetic and gravitational

systems,” ibid. 65, 515–518 �1997�.
3See the references cited in Ref. 1, and also, V. Hnizdo, “Conservation of
linear and angular momentum and the interaction of a moving charge
with a magnetic dipole,” Am. J. Phys. 60, 242–246 �1992�; “Comment
on ‘Torque and force on a magnetic dipole,’ by L. Vaidman, �Am. J. Phys.
58, 978–983 �1990��,” ibid. 60, 279–280 �1992�.

4T. H. Boyer, “Illustrations of the relativistic conservation law for the
center of energy,” Am. J. Phys. �to be published�.

5D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. �Prentice Hall,
Upper Saddle River, NJ, 1999�, pp. 520–521.

6E. F. Taylor and J. A. Wheeler, Spacetime Physics �W. H. Freeman, San
Francisco 1966�, pp. 147–148.
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