
The fact that admissible boundary conditions may break
symmetries was studied by Capri.13

The primary conclusion of this note is that Hamiltonians
like the ones given by Eqs. �1�–�4� do not, by themselves,
specify the system. Only after the boundary conditions have
been specified can one study their properties.
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We present a method that allows us to correct for dead time and check for the proper operation of
a radiation detector while recording data. The method is based on the exponential probability density
of the time interval between successive detector pulses, and involves examining the ratio of the
moments of the time series with a delay time. © 2008 American Association of Physics Teachers.
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I. INTRODUCTION

Accounting for the dead time of a detector is an important
consideration in radiation measurements and a subject that is
usually covered in the undergraduate physics curriculum.
The dead time, 
, is the minimum amount of time between
two pulses so that they are recorded as separate pulses. A
common approach for measuring 
 is to use the “two-source”
method.1 Once the dead time is known, the corrected count
rate C is determined from the measured count rate c using
the relation C=c / �1−c
�.1 The two-source method is con-
ceptually simple, but it does not generally yield accurate re-
sults for the dead time because of the need to measure the
difference between two large numbers that are nearly equal.1

In recent years advancements in electronics have made it
relatively easy to measure the time between successive Gei-
ger counter pulses.2,3 The series of times between successive
pulses, which we label as ti for the ith time, contains useful
information. An excellent exercise is to make a frequency
plot �or histogram� of the time intervals.2 Students can ob-
serve the lack of times less than 
, and can fit the histogram
plot with an exponential function. Tests for randomness3 and
the goodness of the exponential fit support the statistical na-
ture of the decay and enable students to study the physics of
the decay process. In addition, because the histogram is fitted
to the exponential function NCe−Ct, where N is the total num-
ber of counts, we can obtain the corrected counting rate C

from the fit. However, it is not practical to use this method to
determine C. For accurate results we need a large number of
times and a bin size that produces an exponential function
with a large number of counts in each bin. Because the plot
typically involves using a spreadsheet, it takes students some
time to carry out the analysis. Usually this exercise is per-
formed only once during a class session.

In this note we present a simple method that determines
properties similar to the frequency plot, works with a rela-
tively small number of interval times, and does not involve
plotting data. This procedure can therefore be employed in
real time.

II. TIME SERIES METHOD

If a detector is working correctly, the probability that it
detects a particle between time t and t+�t is P�t��t
=Ce−Ct�t. The exponential probability density P�t� has the
desirable property that the expectation value of tm has the
simple form:

�tm	 = 

0

�

tmCe−Ctdt =
m!

Cm . �1�

Because �t	=1 /C, we can form the dimensionless combina-
tion:
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�tm	
�t	m = m ! . �2�

The value m! is unique to an exponential probability density.
We refer to the left-hand side as the mth moment ratio.

Because our data consist of times ti between successive
recordings of the detected signals, the integral in Eq. �1�
reduces to a sum over the ti. If the detector is working prop-
erly, then ��i=1

N ti
m /N� / ��i=1

N ti /N�m should equal m!, where N
is the total number of times in the series. There are two
factors that will modify this ratio: statistical uncertainty due
to N being finite, and the dead time of the detector. If we
subtract a delay time D from each of the ti, then the sum of
Eq. �2� should equal m! if D is greater than 
 and the detector
is working properly. We must be careful to reject the time in
the sum if �ti−D��0.

In Table I we list values of the ratio

�i=1
N �ti − D�m/N

��i=1
N �ti − D�/N�m �3�

for different values of D for data collected with a Geiger
counter. We used the same setup as in Fig. 1 of Ref. 3 with
the LED emitter-detector pair replaced by a comparator chip
and the parallel port polled instead of a digital input card. We
list values of m=2, 3, and 4 for an initial total of N
=10 000. As seen in Table I, the moment ratios are close to
m! for values of D�400 �s. If a finer mesh were used, we
would see that the effective dead time of this Geiger counter
is around 380 �s, because the moment ratios deviate from
m! by greater than the statistical error.

The statistical uncertainty of the counting rate decreases as
1 /�N, so N=10 000 results in a 1% statistical error for C.
The statistical uncertainty of the moment ratios can be de-
rived by doing the appropriate integrals. The variance of a
term in the numerator is �m

2 = �t2m	− �tm	2, where �t2m	
=
t2mCe−Ctdt. Hence, �m /�N
= �t	mm !��2m� ! / �m ! �2−1 /�N for the standard deviation of
the numerator in Eq. �2�. The uncertainty of the denominator
in Eq. �2� can be found from
��t	� �t	 /�N�m��t	m�1�m /�N�, with the approximation
becoming better as N increases. We cannot add the fractional
uncertainties of the numerator and denominator in quadrature

because the same ti appear in both expressions. However, the
fractional uncertainty in the moment ratios are to a good
approximation uncorrelated to the fractional uncertainties in
�t	m, because the moment ratios do not depend on �t	. Hence,
the fractional uncertainty of the moment ratios adds via
quadrature to that of �t	m to give the fractional uncertainty of
�tm	. Thus, the fractional uncertainty of a moment ratio is
obtained by subtracting the squares of the fractional uncer-
tainties of the numerator and denominator:
��2m� ! / �m ! �2−1�−m2� /N and taking the square root. The
resulting fractional uncertainty for the mth moment ratio is
��2m� ! / �m ! �2− �m2+1� /�N. We verified the validity of this
expression using numerical simulation and found the frac-
tional uncertainties agreed with this expression to within 3%.
For m=2, the moment ratio with uncertainty is 2�1�1 /�N�.
For m=3, we have 6�1��10 /�N��6�1�3.2 /�N�, and for
m=4 we obtain 24�1��53 /�N��24�1�7.3 /�N�. Thus for
N=10 000, the second moment ratio should be 2 to within
1%, the third should be 6 to within 3%, and the fourth should
be 24 to within 7%.

III. COMMENTS

Although the determination of the dead time is interesting,
there are other lessons to be learned from this determination.
The result that the moment ratios are equal to m! within the
statistical uncertainty for D�400 �s demonstrates that the
detector is most likely working properly and P�t� is exponen-
tial. We have not done a complete check, because we have
only used values of m equal to 2, 3, and 4. Because the m!
result holds only for an exponential probability density, ex-
amining these three cases is good evidence for its applicabil-
ity. The result that the moment ratios are approximately m!
and the counting rate is the same for all values of D
�400 �s demonstrates that there is no memory in nuclear
decay.4 That is, the probability to decay per unit time is a
constant and does not depend on past history.

In Table I we give the corrected counting rate C, which
equals 1 / �t	. Note that the measured counting rate c �D=0�
of 172 counts/s is less than the corrected rate of 185 counts/s.
The desirable feature of determining the corrected counting
rate in this way is that we do not need to know the value of
the dead time nor use the correction formula C=c / �1−c
�.
An added bonus is that the calculations can be done in real
time because the sums can be computed quickly. If the
counter is connected to a computer, then two or three lines of
the table can be printed as the data is being collected. Dis-
playing a few lines of Table I in real time allows the user to
determine the corrected counting rate directly and check if
the detector is working properly.
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Table I. The moment ratios �tm	 / �t	m for m= 2, 3, and 4 for different delay
times D for a series of 10 000 Geiger counter intervals. The statistical un-
certainties in the last row are approximately the same for each number in the
column.

D��s� �t2	 / �t	2 �t3	 / �t	3 �t4	 / �t	4
Count rate
�counts/s� N

0 1.87 5.34 19.6 171.7 10 000
100 1.90 5.42 20.6 174.7 10 000
200 1.93 5.61 21.7 177.9 10 000
300 1.96 5.81 22.9 181.1 10 000
400 2.00 6.02 24.2 184.3 9996
500 2.01 6.07 24.4 185.0 9849
600 2.00 6.06 24.4 184.9 9660
800 2.00 6.05 24.3 184.8 9303
1000 2.01�0.02 6.06�0.19 24.4�1.7 185�2 8975
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