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We calculate the half-life and energy of alpha decay using a simple potential model consisting of the
sum of the electrostatic Coulomb potential plus a Woods–Saxon form to represent the alpha-nucleus
strong interaction. The calculation extends the standard treatment of alpha decay and gives students
experience in fitting a theoretical model to experimental data. © 2010 American Association of Physics
Teachers.
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I. INTRODUCTION

Alpha decay is discussed in all undergraduate modern
physics and introductory quantum mechanics courses, usu-
ally as the first example of tunneling in quantum systems. It
has the historical significance of being one of the first tests of
the nonrelativistic Schrödinger equation.1 In this article, we
present an extension of the textbook treatment of alpha decay
to the modeling of experimental data: The calculation of the
half-life � and the energy of the emitted alpha particle E�
using an �-nucleus potential.

The use of computers has made it possible for undergradu-
ate students to obtain numerical solutions to complicated
mathematical problems and, in particular, to perform model-
ing of real data. By tackling a research-type problem, stu-
dents experience the difficulty of reconciling theory with
experiment.2

The quantitative analysis of alpha decay in undergraduate
texts consists of treating the problem as barrier penetration in
one dimension.3 It is shown that the decay constant

�=ln 2 /� varies approximately as e−E�
−1/2

. Some textbooks
include a graph of log � versus E�

−1/2 for a wide range of
isotopes that undergo alpha decay.3 The linear plot supports
the barrier penetration model and the alpha-nucleus potential
used in the calculation. In more advanced courses, a similar
approach is done using the WKB approximation.4

In this article, we discuss a numerical calculation of � and
E� for the even isotopes of uranium using a potential model
for the interaction. The parameters of the potential are varied
to fit the experimental data. To do this calculation, we will
need to consider some details of alpha decay that are not part
of the standard textbook treatment, such as the value of the
radial quantum number of the decaying state, reasonable val-
ues for the size and strength of the potential, and the prob-
ability that neutrons and protons cluster to form an alpha
particle in the decaying state. We start by describing the po-
tential model and the methods used in calculating E�. Then
the more difficult calculation of the half-life is presented.
This article is structured so as to provide a systematic analy-
sis that can done by undergraduate physics majors.

II. POTENTIAL MODEL

For spin zero nuclei, the interaction between an alpha par-
ticle and the nucleus can be modeled by a spherically sym-
metric potential, V�r�=Vem+Vstrong, where Vem is the electro-
static contribution and Vstrong represents the strong
interaction. The electrostatic contribution is taken to be the

potential energy between a point particle of charge 2e and a
uniformly charged sphere of radius w with total charge of
�Z−2�e,

Vem = �2�Z − 2�e23w2 − r2

2w3 �r � w�

2�Z − 2�e2

r
�r � w� ,� �1�

where w is the effective radius and Z is the atomic number of
the nucleus. For the strong interaction, we use the Woods–
Saxon form,5 which is a common choice for the nucleon-
nucleus potential,

Vstrong�r� =
V0

e�r−w�/a + 1
, �2�

where a is the “surface thickness.” For the uranium isotopes,
we fix the parameter a to be 0.8 fm. With a fixed, the poten-
tial V�r� has two free parameters, V0 and w, which can be
adjusted so that the calculated values of E� and � agree with
experiment.

There are two important radii which satisfy V�r�=E�.
These are the radius r1 where the “tunnel” begins and the
radius r2 where the tunnel ends: V�r1�=V�r2�=E� with
r1�r2.

III. SOLVING THE SCHRÖDINGER EQUATION

To solve for the energies of the bound alpha particle states,
we use the Schrödinger equation with the potential V�r�. We
will also show that the energy of the quasibound decaying
state of the alpha particle can be determined using the same
method. We consider alpha decay transitions where the initial
and final nuclear spins are zero, Ji=Jf =0, and the decay
takes place in the �=0 channel. With the usual substitution
R�r�=u�r� /r for the radial coordinate, the Schrödinger equa-
tion becomes

−
�2

2m

d2u�r�
dr2 + V�r�u�r� = Eu�r� �3�

for �=0. Because R�0� is finite, u�r=0�=0. To solve Eq. �3�
numerically, we employ a simple finite difference approxi-
mation for the second derivative,6
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u�i + 1� = 2u�i� − u�i − 1� + �22m

�2 �V�i� − E�u�i� , �4�

where r�i�, u�i�, and V�i� are arrays for r, u�r�, and V�r� with
i an integer: r�i�= i�, u�i�=u�r�i��, and V�i�=V�r�i��. The
step size � is taken to be 0.01 fm. To solve Eq. �4� for a
particular energy, we set u�0�=0 and u�1�=1. We can calcu-
late u�i� for arbitrary i by iteration because u�i+1� is ex-
pressed in terms of u�i� and u�i−1� in Eq. �4�.

The energy of a bound state alpha particle E��0 can be
calculated using the shooting method.6 For E��0,
u�r→	�→0. We start with an energy E0 slightly greater
than V0 and iterate Eq. �4� out to a radius r0, where r0
r1.
The value of u�r0��uE is saved. Then the energy is incre-
mented by �E and Eq. �4� is iterated again out to r0. The new
value of u�r0��uE+�E is compared to uE. If the product
uEuE+�E�0, the process is repeated with the same value of
�E. If uEuE+�E�0, we know that E� is between E and
E+�E because u�r0� has changed sign. The process is con-
tinued with a value of �E equal to �E=−�E /2. As this
energy stepping process is repeated, the energy converges to
the value of E for which �u�r0�� has a minimum.

We can use this same method to find energies E��0 for
quasibound states. For a given energy E�0, the function
u�r→	� equals the Coulomb wave function for �=0 shifted
in phase due to the strong interaction. At the energy of the
quasibound state E�, the strong phase shift, which is the
complete phase shift minus the Coulomb phase shift, equals
� /2. In alpha-nucleus scattering, E� is referred to as a reso-
nance because the scattering phase shift is � /2. The width �
of the resonance is determined by calculating the strong
phase shift through the resonance energy. The strong phase
shift is � /4 at the energy E�−� /2 and 3� /4 at the energy
E�+� /2. In terms of �, the half-life of the decaying quasi-
bound state is given by �= �ln 2�� /�. The difficulty in deter-
mining E� and � by calculating the strong phase shift is that
for a long half-life the width is very small compared to E�.

If we use long double precision �C syntax� in standard 64
bit compilers, we can obtain a precision of 17 decimal
places. Because the energies for alpha decay are a few MeV,
the energy resolution using long double precision will be
10−17 times a few MeV. So we can expect Eq. �4� to have a
precision of 	10−17 MeV for the energy E�.

In Table I we list the alpha decay properties of the even
isotopes of uranium. With a precision of 17 decimal places,
only the half-life of U222 can be calculated by examining the

phase shift through resonance. However, at the resonance
energy E�, the ratio u�r2� /u�r1� is a minimum,7 with the
value of this ratio being as small as 10−20. Thus, we can
determine the resonance energy E� by using the boundary
condition that u�r2� is a minimum. In practice, we do not
need to iterate out as far as r2. We can iterate Eq. �4� out to
a value of r0 inside the tunnel between r1 and r2, which is
appropriate for the desired accuracy of E�. For the uranium
series, a value of r0 of 20 fm gives an accuracy of E� of
10−17 MeV. This shooting method of calculating E� for the
quasibound states of the Schrödinger equation gives a value
that is more accurate than the measured value.

IV. RADIAL QUANTUM NUMBER AND ENERGY
CALCULATION

An important consideration for the alpha decay calculation
is the approximate strength of V0 in Eq. �2�, which deter-
mines the radial quantum number n of the quasibound �=0
state. As the magnitude of V0 is increased, more bound states
can be fitted into the well. The energy E� of the decaying
state is greater than zero, and we assume that the decaying
state is the first state with energy greater than zero. The val-
ues of E� for the uranium isotopes are listed in Table I. The
energy difference between the last bound state and the first
quasibound state must be at least E�. For U222, the difference
in adjacent energy states must be greater than 9.5 MeV.

A crude estimate of the radial quantum number for the
alpha particle in this nucleus can be found using a one-
dimensional infinite square well. For a well radius of
a=8 fm, the energy levels of the infinite square well are
En= ��2�2 / �2ma2��n2	0.8n2 MeV. If we equate the differ-
ence in adjacent levels to 9.5 MeV, 0.8�n2− �n−1�2�=9.5, we
obtain n	6.

A more accurate estimate can be made using V�r�=Vem

+Vstrong. In Table II we list the results of solving the
Schrödinger equation such that the state with radial quantum
number n has positive energy and the �n−1� level has an
energy that is just below zero and bound. For this calcula-
tion, we used w=8 fm, which is a typical value for the ura-
nium nucleus. From Table II, we see that to have a value for
E�=9.5 MeV for the first quasibound state of U222, �V0� must
be greater than 108 MeV. For �V0�=108 MeV, the radial
quantum number for the alpha particle is n=10. Because the

Table I. Experimental data for the even uranium isotopes. The width �

�MeV� is related to the half-life ��s� as �=ln�2�� /�.

Isotope E� �exp �exp

U238 4.27 1.41
1017 3.23
10−39

U236 4.57 7.39
1014 6.21
10−37

U234 4.86 7.73
1012 5.94
10−35

U232 5.41 2.17
109 2.16
10−31

U230 5.99 1.80
106 2.55
10−28

U228 6.80 3.28
104 1.40
10−26

U226 7.72 3.5
10−1 1.3
10−21

U224 8.62 9
10−4 5
10−19

U222 9.50 1
10−6 5
10−16

Table II. The first quasibound alpha particle energy E� in terms of the radial
quantum number n for orbital angular momentum �=0. V0 is the potential
strength for the Woods–Saxon potential. A value of w=8 fm was used.

n
V0

�MeV�
E�

�MeV�

2 �45.2 3.7
3 �49.2 3.9
4 �53.4 5.1
5 �59.2 6.2
6 �66.3 7.1
7 �74.9 7.9
8 �84.7 8.6
9 �95.8 9.2
10 �108.2 9.8
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difference in adjacent isotopes is only two neutrons, it is
reasonable to assume that the radial quantum number is the
same for the isotopes listed in Table II.

A value of �V0��108 MeV is consistent with alpha-
nucleus scattering data, which yields V0	120 MeV.8 This
value corresponds to 30 MeV/nucleon, which is consistent
with the nucleon-nucleus mean field potential.6 For the rest
of the calculations, we choose n=10 as the radial quantum
number of the quasibound decaying alpha state. With n de-
termined, V0 can be adjusted to fit the experimental data of
E�.

V. HALF-LIFE CALCULATION

Although an accurate value for the energy of the alpha can
be calculated from the Schrödinger equation, it is more chal-
lenging to calculate the half-life using the Schrödinger equa-
tion. The reason is that to determine � we need to calculate
the phase shift through the resonance. As mentioned in Sec.
IV, standard compilers have a precision of 10−17. From Table
I, only U222 has a broad enough width to do this calculation
numerically. However, we can obtain an approximate value
for the half-life by following an approach covered in under-
graduate quantum physics texts. The decay constant can be
expressed in terms of the barrier penetration factor for the
transmission probability times the number of times the alpha
particle “hits” the barrier,3,7

�BP � f0e−2�, �5�

where f0 is the frequency at which the particle hits the barrier
and � is the WKB transmission factor,

� =
1

�



r1

r2 �2M�V�r� − E�dr . �6�

The frequency f0 can be approximated as the classical speed,
p /m=�2� /m, divided by the diameter of the nucleus, 2r1.
We take the energy �=E�− �V0+Vem�0��, which is the ap-
proximate kinetic energy of the alpha particle inside the
nucleus. With these substitutions, we have

�BP =� 2�

mc2

c

2r1
e−2�. �7�

Two corrections need to be made to compare �BP with ex-
periment. We need to correct for the approximation made in
using the barrier penetration approach, and we have assumed
that there is exactly one alpha particle present in the decay-
ing nuclear state at all times, an assumption that can be
checked by comparing with experiment. Realistic calcula-
tions include the preformation factor P, which is the prob-
ability that an alpha particle is present in the nucleus at any
particular time.8 That is, P represents the fraction of the time
two neutrons and two protons behave as a single alpha par-
ticle. We first estimate the accuracy of �BP and then compare
our calculation with experiment.

The correct resonance width �correct can be determined by
calculating the scattering phase shift ��E� as a function of
energy.7 For narrow resonances, the phase shift has the en-
ergy dependence tan���E��=�correct /2 / �E�−E�, where E� is
the resonance energy. The width � is related to the decay rate
by �=��. Using these relations, we determined the accuracy
of the barrier penetration half-life calculation as follows.
First, Eq. �4� and the shooting method were used to deter-

mine E� to the maximum precision of the computer. Then we
calculated �BP=��BP. Next we calculated the scattering
phase shift for energies near E�. Because we assume that the
resonance width is approximately �BP, we calculate ��E� for
values of E=E�� i�BP /10, where the integer i satisfies �i�
�10. By examining ��E� through the resonance, we can de-
termine �correct and compare it to �BP.

We show our results in Fig. 1. Note that for E=Eres, the
phase shift is 90°. We have plotted the phase shift for three
values of V0. The solid dots and triangles, which overlap
each other, are for V0=−113.4 MeV and different values of
w. The dots are for E�=9.53 MeV and the triangles are for
E�=10.2 MeV. In both cases, n=10. The curve in Fig. 1
corresponds to a phase shift that has a width equal to 0.5�BP.
To test the validity of the �� factor in Eq. �6�, we have also
plotted the phase shift for a state with V0=−55 MeV and
E�=9.72 MeV in Fig. 1 �open circles�. In this case, n=5 and
the state is the second quasibound state with E�0. Even
though � is quite different than the other two cases, 16 MeV
compared to 73 MeV, the width of the resonance is nearly the
same fraction of �BP. In this case, �correct	0.7�BP. For the
uranium isotopes, the value of � is roughly the same because
the magnitude of V0 is large. Thus, we estimate that

�correct 	 0.5�BP 	 0.5� 2�

mc2

c

2r1
e−2� �8�

for the even isotopes of uranium. For the thorium isotopes,
�correct	0.7�BP.8

Before we fit the potential parameters to the data, we need
to consider another aspect of the decay. What is the probabil-
ity of having two neutrons and two protons cluster together
to form an alpha particle in the quasibound state? This prob-
ability is referred to as the preformation factor P. Typical
values for P for heavy nuclei are between 0.05 and 0.25.8

The value of P is calculated from models for alpha formation
or by comparing a calculation using a reliable potential, fit-
ted to other alpha-nucleus properties, with experiments.

VI. FITTING THE DATA

At this stage of the analysis, there are three free param-
eters: P, w, and V0. We can set w=1.3A1/3 fm and determine
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Fig. 1. Plot of the strong phase shift �in degrees� as a function of the
difference in the energy of the alpha particle from the resonance energy Eres.
The units in the horizontal axis are �BP. That is, a value of �1 corresponds
to alpha energies of Eres��BP. Results for three different potentials as dis-
cussed in the text are plotted. The curve corresponds to a phase shift that has
�=0.5�BP.
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P and V0 by fitting the data. Another option is to set P equal
to a value from the literature and determine w and V0 from a
fit to the data. We believe it is most useful for undergraduate
students to take the former approach. It is a fairly good ap-
proximation to take w=1.3A1/3 fm. With the range of the
potential set, we can vary V0 so that the state with a radial
quantum number of n=10 has an energy E� equal to the
experimental value. With V0 determined, �BP can be calcu-
lated and a good approximation to �correct from Eq. �8� can be
compared with the experimental value. To find P, we divide
�exp by �correct: P��exp /�correct.

The results of the calculation are shown in Table III. It is
interesting that the potential strength V0 has roughly the
same magnitude for the first six isotopes. Decreasing just the
range parameter w increases E� enough to match the experi-
mental data. The preformation factor P changes from 0.22 to
0.027 as the atomic mass number decreases. These values are
consistent with those in literature. In Ref. 9, P=0.244 for
U238 and decreases monotonically to 0.05 for U224. The rea-
son for the decrease of P for the different isotopes of ura-
nium is due to the closure properties of the nuclear shells.9

An interesting exercise is to plot the half-life � of the
quasibound state versus E�. The shape of the graph is some-
what model independent because the shape of the Coulomb
potential is the same for most nuclear models. We demon-
strate this model independence in Fig. 2 where we have set P
equal to its average value of P=0.15. In Fig. 2 the solid
curve is for V0=−115.7 MeV with w varied from 8.0 to 7.7
fm to produce values of E� between 4.1 and 9.0 MeV. The
dashed curve is for w=8.0 fm with the parameter V0 varied
from �116 to �108 MeV to produce values of E� between
4.2 and 9.9 MeV. In Fig. 2 we have also plotted the data for
the even uranium isotopes. The solid dots are the experimen-
tal values for the uranium series isotopes with even atomic
numbers: U238 down to U222.

In both cases, the calculations match the general trend of
the data, with the constant V0 curve being slightly better. The
close fit to the data demonstrates the validity of the tunneling
model and that the shape of the potential is fairly accurate. If
we look at the details, the agreement is somewhat misleading
because the half-life scale is logarithmic. If E� and � are fit at
U238, then at U226, where E�=7.715 MeV, the half-life � is
low by a factor of 3.5 for constant V0. For constant w, � is

low by a factor of 7 for U226. Although the data suggest that
V0 varies less than the radius w for the uranium isotopes, it is
not possible to find a satisfactory fit without changing P. In
the model presented here, P needs to change by a factor of 5
from U238 to U222, which is consistent with calculations in
literature.9

VII. SUMMARY

Using a potential model to calculate the energy and half-
life for the alpha decay of heavy nuclei is a practical under-
graduate problem. The key to an accurate calculation of E� is
that the shooting method used to solve for bound states can
also be used for quasibound states using a value of r0 inside
the tunnel. A determination of the half-life using long double
precision is possible because the correction to the barrier
penetration integral can be determined from states with half-
lives shorter than a millisecond. The problem extends the
usual textbook treatment of alpha decay by having the stu-
dents perform a model calculation on nuclear data. The stu-
dents solve for the radial quantum number of the decaying
state and the preformation factor. Their results can be com-
pared with more sophisticated treatments in literature. In this
article, we treated the isotopes of uranium. The same meth-
ods can also be applied to the isotopes of other elements.
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Fig. 2. Plot of the half-life versus the energy of the alpha particle. The solid
line corresponds to V0=−115.7 MeV with the parameter w varying from 8.0
to 7.7 fm. The dashed line has w=8.0 fm with −116�V0�−108 MeV. The
points are the experimental values for the even uranium isotopes: U238 to
U222.
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Ice Bomb. Water, when it goes through the transition from the liquid to the solid phase, expands. The ice bomb, sold
by Cenco in 1937 for sixty cents, demonstrates this with a bang. The bomb, about 7.5 cm in diameter, is filled with
water that has been boiled to remove any dissolved gases, sealed with the screw plug, and placed in a freezing
mixture. Eventually the expanding ice is too much for the casing and it explodes. Presumably this is done outside with
the students at a safe distance. This example, in the Greenslade Collection, is unused! �Photograph and Notes by
Thomas B. Greenslade, Jr., Kenyon College�
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