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Two coupled Schr€odinger equations are used to calculate excited states of atomic helium. Using

product state functions for the two-electron state, the shooting method is used to numerically determine

the energies of the allowed singlet and triplet levels. The calculations agree well with the data, and the

coordinate-space basis yields Schr€odinger equations for helium that are familiar to students who have

used similar methods for the hydrogen atom. VC 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4932549]

I. INTRODUCTION

The helium atom played an important role in the devel-
opment of atomic physics. Since it could not be treated by
the Bohr–Sommerfeld method, the helium problem led to
the development of modern quantum mechanics and espe-
cially to the treatment of identical particles. A historical
review is given in Ref. 1. Helium is particularly interesting
because it is the simplest of the multi-electron atoms, and
the effects of indistinguishable particles play an important
role in the energy spectrum. For these reasons, the helium
atom is an indispensible topic in the undergraduate physics
curriculum and is covered in most quantum and some
computational physics textbooks.2–4 Unfortunately, solv-
ing for the energy levels of helium is significantly more
difficult than for hydrogen, so approximation methods are
used. Helium is often used as an example for introducing
the variational principle and for applying perturbation
methods.

Quantum textbooks usually limit the treatment of helium
to analytic methods, in which hydrogen-like wave functions
are used in perturbation and exchange integrals.2 These cal-
culations can be improved using numerical methods
described in computational physics textbooks. For example,
the ground-state energy of helium can be approximated using
Monte Carlo methods3 or using the Hartree–Fock self-
consistent field approximation.4 The literature also contains
articles on the numerical treatment of helium. For the ground
state, these include Hartree–Fock self-consistent field meth-
ods,5,6 variational methods,7 using hydrogen states as a ba-
sis,8,9 and including angular correlations of the two
electrons.10 For the helium atomic excited states, there are
articles that use a perturbation approach,11 a variational
method,12 and a finite number of basis states.13 In this article,
we present a calculation, to supplement textbook treatments
of atomic helium, that solves for the energies and eigenstates
in a way that is similar to solving the hydrogen atom using
the Schr€odinger equation. We use neither perturbation nor
variational methods for the excited states.

Schr€odinger’s equation for the hydrogen atom is obtained
by casting the operator eigenvalue equation Ĥ jWi ¼ EjWi in
a coordinate-space basis, which produces a differential equa-
tion to be solved for E and Wð~rÞ ¼ h~rjWi. We follow this
same approach for the atomic states of helium. We limit the
treatment to singly excited states (1snl), with one electron in
the 1s level. In this case, both the screening and exchange
potentials contain only one term (see Appendix B) and the
calculation is much simpler than if both electrons have l 6¼ 0.

For the 1snl states, the eigenstates will be of the form
Wð~r1;~r2Þ / w1sðr1Þwnlðr2Þ6wnlðr1Þw1sðr2Þ. We show in
Appendix A how one obtains coupled Schr€odinger equations
from the operator eigenvalue equation. The coupled differen-
tial equations can be solved numerically, using the “shooting
method,” and the results match the data well.

In addition to using the same approach as for hydrogen,
solving the helium atom in a coordinate-space basis has other
advantages. Students can see how one obtains differential
equations for identical particles from the operator eigenvalue
equation. One does not use a specific form for the state func-
tions, as is done with the variational approach. There are no
free parameters in a trial wave function to vary. Although
the solution is an approximation, one is not using perturba-
tion theory. The approximation is not in solving the differen-
tial equations, but that the basis, although infinite, does not
span the complete two-particle state space for identical par-
ticles. The students will also see the difficulties and limita-
tions of directly solving coupled differential equations for
the energies and state functions of multi-electron atoms.
Finally, although the method uses an approximation, the
results are quite accurate, within 0.04 eV, for the excited
states.

In order to give the best overview of the calculation, we
start with the differential equations and then discuss their
numerical solution. In Appendix A, we derive the coupled
differential equations—effective Schr€odinger equations—
from the operator eigenvalue equation Ĥ jWi ¼ EjWi. In
Appendix B, we discuss how the screening and exchange
potentials are obtained. In Appendix C, we show that the tri-
plet s states can be determined using the approach presented
here. The article closes with a review of the ground-state
calculation and the results for the excited atomic states of
helium.

II. THE SCHR €ODINGER EQUATIONS

We start with the nonrelativistic Hamiltonian for the
helium atom

Ĥ ¼ p̂2
1

2m
þ p̂2

2

2m
þ V̂N1 þ V̂N2 þ V̂12; (1)

where V̂N1 and V̂N2 are the Coulomb potential energy opera-
tors for each electron due to the nucleus, while V̂12 is the
potential energy operator representing the Coulomb interac-
tion of the two electrons with each other. For m we use the
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electron’s mass, as is done in undergraduate textbooks for
the treatment of the helium atom.2–4 The correction due to
the motion of the nucleus, a three-body reduced mass prob-
lem, is difficult to include. An estimate for this correction of
the ground-state energy of helium is14 0.00014 times the
ground-state energy. If this fractional error were applicable
to the excited states, a� 0.008-eV shift would result. We are
also neglecting any terms in Ĥ that depend directly on spin.
The largest term would be the spin-orbit interaction. From
Ref. 15, the spin-orbit splitting for the 2p excited state of he-
lium is �10�4 eV.

The goal is to find the eigenvalues E of Ĥ

Ĥ jW12i ¼ EjW12i; (2)

where jW12i is the two-electron state. Because the two elec-
trons are identical fermions, jW12i must change sign upon
particle exchange. Nonrelativistically, the space and spin
parts of the state can be separated. The spins can combine to
be S¼ 0 (singlet), which changes sign under particle
exchange, or S¼ 1 (triplet), which is unchanged under parti-
cle exchange.

Consider first the ground state. Since we are interested in
solving a differential equation, i.e., the Schr€odinger equation,
for the allowed energies E, we use a coordinate space basis.
As a simple ansatz that satisfies the requirements of identical
particles, we choose for the ground state

h~r1~r2jW12i ¼ R1sðr1ÞY00ðX1ÞR1sðr2ÞY00ðX2Þ; (3)

where R1s(ri) is the radial function and Y00(Xi) is the spherical
harmonic for electron i. The function R1s is the same function
for each electron, and is initially unknown. We note that the
ground-state function is symmetric upon particle exchange,
since the ground state has S¼ 0. After comparing with the
data, we will discuss the limitations of using this form.

In Appendix A, we show how to obtain differential equa-
tions, Schr€odinger equations, from Eq. (2). By operating on
the left with the bra hr1jhw1sj2 times Y00(X1) and integrating
over X1, we obtain the following differential equation for
u1s(r)� rR1s(r):

� �h2

2m

d2u1s rð Þ
dr2

� 2e2

r
u1s rð Þ þ VC1s rð Þu1s rð Þ ¼ E0u1s rð Þ:

(4)

The term �2e2/r is the electrostatic Coulomb potential due
to the nucleus, while VC1s(r) is the repulsive Coulomb
screening potential due to the other electron. This function
depends on u1s(r), and is in this case the potential due to a
spherically symmetric charge distribution with density
R2

1sðrÞ. We describe how to solve for u1s(r) and E0 in a self-
consistent way in Sec. III.

For singly excited states where one electron is in the low-
est l¼ 0 state and the other electron in the nl state, we choose
the form

h~r1~r2jW12i ¼
1ffiffiffi
2
p R1s r1ð ÞY00 X1ð ÞRnl r2ð ÞYlm X2ð Þ
�

6Rnl r1ð ÞYlm X1ð ÞR1s r2ð ÞY00 X2ð Þ�; (5)

with the þ for the singlet and the – for the triplet. For these
excited states, there are two radial functions to be

determined, R1s(r) and Rnl(r). By operating on the left of
both sides of Eq. (2) with the appropriate bras (see Appendix
A), we obtain differential equations that are effective
Schr€odinger equations for u1s(r) and unl(r)

� �h2

2m

d2u1s rð Þ
dr2

� 2e2

r
u1s rð Þ þ VCnl rð Þu1s rð Þ

6Vx rð Þunl rð Þ ¼ E0u1s rð Þ; (6)

� �h2

2m

d2unl rð Þ
dr2

� l lþ 1ð Þ
r2

unl rð Þ
� �

� 2e2

r
unl rð Þ

þ VC1s rð Þunl rð Þ6Vx rð Þu1s rð Þ ¼ E00unl rð Þ: (7)

The terms �2e2/r are the electrostatic Coulomb potentials
for each electron due to the nucleus, while VC1s(r) and
VCnl(r) are the repulsive Coulomb screening potentials due
to the other electron. The function VC1s(r) depends on u1s(r)
and is the potential due to a spherically symmetric charge
distribution with density R2

1sðrÞ. The function VCnl(r)
depends on unl(r) and is due to a spherically symmetric
charge distribution with density R2

nlðrÞ.
The function Vx(r) in Eqs. (6) and (7) is a “Coulomb

exchange” potential. In this case, as shown in Appendix B, it
is the potential due to a charge distribution equal to
R1s(r)Rnl(r)Ylm(X). Without the term Vx(r), the two differen-
tial equations would separate, with Eq. (6) containing only
u1s(r) and Eq. (7) containing only unl(r). The potential Vx(r)
couples the two equations, similar to the way that a “mixing
potential” is used in a coupled-channels calculation in atomic
and nuclear physics to represent the interaction of the par-
ticles or states with each other.17 Here, however, even with-
out Vx(r) the nl state and 1s state affect each other via the
Coulomb screening potentials. The Vx(r) term is a direct cou-
pling of the equations as a result of the two particles being
identical.

We note that both Coulomb screening potentials, VC1s(r)
and VCnl(r), for the singly excited states are spherically sym-
metric and can be relatively easily determined using Gauss’s
law. The exchange potential Vx can be determined from
Poisson’s equation. The application of the method used here
for atoms with Z> 2 electrons would be difficult. One would
have Z coupled differential equations, with Z � 1 Coulomb
screening and exchange potentials in each equation. For
Z> 2, a Hartree–Fock approach would be a better choice.

III. NUMERICAL METHODS

We now discuss how the Schr€odinger equations (4), (6),
and (7) can be solved numerically. There are two aspects to
solving the equations: the numerical solution of the equation,
for which we use a shooting method, and the self-
consistency of the various potential functions with the state
functions. We begin with the ground state, then describe the
extension to the excited states.

For the ground state, we need to solve Eq. (4), which we
rewrite dropping the subscripts on u for brevity

� �h2

2m

d2u rð Þ
dr2

� 2e2

r
u rð Þ þ VC1s rð Þu rð Þ ¼ E0u rð Þ: (8)

The boundary conditions on u(r), u(0)¼ 0 and u(r ! 1)
! 0, can only be satisfied for certain values of E0, which are
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related to the allowed bound-state energies of the system.
The potential VC1s(r) depends on u(r) (see Appendix B).

We solve Eq. (8) numerically using the “shooting method”
as described in Ref. 16, which we summarize. The shooting
method is used to solve boundary value problems by adjust-
ing the unknown parameter to match the boundary values.
In our case, the boundary values are u(r)¼ 0 and u(r ! 1)
! 0. The radial coordinate is made discrete with a step size
D. The variable r, u(r), and the potentials become arrays:
r ! r(i)¼ iD, u(r) ! u(r(i)) ! u(i), and VC1s(r) ! VC1s(i).
We use a finite difference method for the second derivative
of u(r)

d2u rð Þ
dr2

! u iþ 1ð Þ þ u i� 1ð Þ � 2u ið Þ
D2

: (9)

After substituting this expression into Eq. (8), one obtains a
discrete version of the differential equation

u iþ 1ð Þ ¼ 2u ið Þ � u i� 1ð Þ

þ 2mD2

�h2
� 2e2

r ið Þ þ VC1s ið Þ � E0

 !
u ið Þ: (10)

In the shooting method, one starts with a trial energy E0,
which lies below the expected value. As a start we assign
u(0)¼ 0 and u(1)¼ 1.0. After the first iteration of Eq. (10),
we assign u(0)¼ 0 and u(1) to be the value it had in the pre-
vious iteration after normalization. From Eq. (10), u(iþ 1) is
determined from u(i), u(i � 1), and values of the potentials
at i. We use Eq. (10) to iterate u(i) out to some large value of
i, called imax. We assign u(imax) the value t0. Next, the trial
energy is increased by an amount dE0 and the process is
repeated. The function u(imax) will have a different value,
which we call t1. If t1 and t0 have the same sign, then the trial
energy is changed again by an amount dE0; t1 ! t0, and the
process is repeated. Once t1 and t0 have opposite signs, then
the wave function has changed sign at r¼ imaxD, and the trial
energy has passed over the bound-state energy. When t1 and
t0 have opposite signs, the energy step is reversed and
halved, dE0 ! �dE0=2; t1 ! t0, and the process is repeated
to the desired accuracy. In our calculations, we choose
D¼ 0.001 Å and imax¼ 15000. The code is checked for accu-
racy by requiring the numerical energies E0 obtained without
VC1s to agree, to six significant figures, with the helium ion
energies 54.4178/n2 eV. All variables are set to double
precision.

We start by taking the electrostatic potential VC1s(i) to be
that produced by an electron in the 1s state of a singly ion-
ized helium atom. After Eq. (10) is solved, the screening
potential VC1s(i) is updated with the new function u(i). For
the update, VC1s(i) is calculated with u(i) normalized to one:P

iuðiÞ
2D ¼ 1. If the energy E0 is not exactly equal to the

correct bound-state energy, the function u(i) will increase
without limit as i!1. To obtain the normalized wave func-
tion, we let i start at imax and decrease i until juðiÞj is a mini-
mum. Once this value of i¼ imatch is found, then we set u(i)
equal to zero for values of i> imatch. The function u(i) is then

normalized such that
P

iuðiÞ
2D ¼ 1. For example, in the

1s2s triplet calculation, imatch� 5000, which corresponds to
5 Å. The value of u1s(5000) is around 10�8 of the maximum
value of u1s(r) near 0.3 Å.

With the screening potential updated with the new u(i),
Eq. (10) is solved for new values of E0 and u(i). The next
iteration updates the screening potential VC1s(i), and the
process is repeated until self-consistency is accomplished.
A flow diagram for the ground-state calculation is shown
in Fig. 1. Self-consistency means that u(i) is a solution of
Eq. (10) for a screening potential determined from a charge
density q(i)¼ eu2(i)/r(i)2, where

P
iuðiÞ

2D ¼ 1. Self-
consistency is reached after less than 20 iterations for the
ground state. The computer code we used for the ground-
state calculation is provided in the supplementary material
of this paper.18

For the excited states, the shooting method can also be
used for the coupled Schr€odinger equations, Eqs. (6) and (7).
Following the same procedure as with the ground state, the
radial coordinate is made discrete with step size D. Using
Eq. (9) for the second derivatives, one obtains discrete ver-
sions of Eqs. (6) and (7)

u1s iþ 1ð Þ ¼ 2u1s ið Þ � u1s i� 1ð Þ

þ 2mD2

�h2
� 2e2

r ið Þ þ VCnl ið Þ � E0

 !
u1s ið Þ

6
2mD2

�h2
Vx ið Þunl ið Þ ð11Þ

and

unl iþ 1ð Þ ¼ 2unl ið Þ � unl i� 1ð Þ þ D2 l lþ 1ð Þ
r ið Þ2

unl ið Þ

þ 2mD2

�h2
� 2e2

r ið Þ þ VC1s ið Þ � E00

 !
unl ið Þ

6
2mD2

�h2
Vxu1s ið Þ; ð12Þ

where the þ is for the singlet and the – for the triplet states.
We start by taking u1s(i) to be the 1s wave function for

singly ionized helium, and unl(i) to be the nl wave function
of hydrogen. The potentials Vx(i) and VCnl(i) are deter-
mined from these trial functions. Then the procedure shown
in Fig. 2 is carried out until self-consistency is obtained.

We solve Eq. (11) for the lowest bound state of energy E0,
and the function u1s(i). The new u1s(i) is used to update VC1s

and Vx for Eq. (12). Then we solve Eq. (12) for the lowest
bound-state energy E00 and an updated unl(i). The new unl is
used to update VCnl and Vx for Eq. (11). The process is
repeated until u1s(i) and unl(i) do not change, and the equa-
tions are self-consistent. Thus, the functions u1s(i) and unl(i)
are solutions to the coupled equations with screening and
exchange potentials calculated from the same u1s(i) and
unl(i). The computer codes we used for the excited state cal-
culations can be found in the supplementary material.18

Fig. 1. Flow diagram for the ground-state calculation. After Eq. (10) is

solved for E0 and u(i), VC1s(i) is updated with the new u(i). The process is

repeated until self-consistency is reached.
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The shooting method is a relatively easy way to solve for
the bound-state energies and wave functions. Other techni-
ques for numerically solving differential equations can be
used. We have had success with the shooting method
approach in our computational physics classes. The method
is straightforward, and the students can visualize how the
wave function approaches zero at the special bound-state
energies. We discuss the results in Secs. IV–VIII.

IV. HELIUM GROUND STATE

The helium ground-state calculation is a good example to
demonstrate a self-consistent potential calculation. Using Eq.
(10), self-consistency is reached after less than 20 iterations
with the following results: E0 ¼ 24:98 eV; A ¼ 91:82 eV, and
B¼�38.93 eV, which gives a ground-state binding energy
equal to E ¼ E0 þ Aþ B ¼ 77:87 eV.18 This value of E is to
be compared to the experimental value of 79.005 eV. This
self-consistent potential result for the helium ground state is
well known.

It is instructive to consider why the theoretical calculation
does not agree with experiment. The numerical solution of
Eq. (10) can be made more accurate by making D smaller,
but this will only improve the number of significant figures
in the calculation; it will not close the discrepancy between
the calculation and experiment. Since we did not pick any
particular form for the wave function u(r)¼ rR(r) as is often
done using variational methods, we can’t improve our results
by changing the shape for R(r). We have not made any
approximations in solving the equation. However, although
our form for Wð~r1;~r2Þ in Eq. (3) is of infinite dimension and
symmetric in ~r1 and ~r2, it does not span the complete space
of possible wave functions for the indistinguishable elec-
trons. Hence, our result will be higher in energy than the
energy obtained using a complete basis. A more complete
basis will include angular correlations, where the (un-nor-
malized) form of the wave function is

h~r1~r2jW12i ¼ R0ðr1ÞR0ðr2Þ þ
X

l

alRlðr1ÞRlðr2Þ

�
Xl

m¼�l

h00jlml� miYlmðX1ÞYl�mðX2Þ
 !

¼ R0ðr1ÞR0ðr2Þ þ
X

l

alRlðr1ÞRlðr2Þ

� Plðcosðr̂1 � r̂2ÞÞ: (13)

The function on the right is symmetric under exchange of
~r1 and ~r2, and is an eigenstate of L̂

2
with eigenvalue zero.

This is a difficult extension, and perhaps too difficult for the
undergraduate classroom. We have included the l¼ 1 term in
the sum with the result that E¼ 78.54 eV. As we shall see,
excluding angular correlations for the excited states yields
results that are slightly above experiment.

In Table I, we list the results for the ground and excited
states. The energy that is being calculated is the difference in
energy between the helium atomic states and the helium nu-
cleus plus two free electrons. All the experimental data in
Table I are found in Ref. 15. The ionization energy of the he-
lium ground state is 24.5874 eV, which is added to the
energy of 54.4178 eV needed to remove the single electron
from the helium ion. The ground-state energy becomes
79.0052 eV� 79.005 eV as listed in the table. In the first col-
umn, for comparison, we list the sum of the energies of a sin-
gle electron bound to a helium nucleus, 54.4178 eV, plus a
single electron bound to the helium nucleus that is com-
pletely screened by the other electron, (54.4178/22)/
n2� 13.6044/n2, in eV.

V. EXCITED p STATES

The results for the 1s2p and 1s3p states18 are shown in
Table I. We list the contributions from the different parts of
Eqs. (11) and (12). The initial column is the energy of the
“simple screening” state without any screening for the 1s
electron and complete screening for the 2p electron. The
next column lists the results of solving Eqs. (11) and (12)
without the exchange potential. The last column is the com-
plete calculation, which can be compared with the experi-
mental result in the last column. We estimate the numerical
accuracy of the 1s2p singlet result to be 60.005 eV and the
1s2p triplet result to be 60.01 eV, which is the difference
between the calculations for E using E ¼ E00 þ A0 þ B0 and
E ¼ E0 þ Aþ B (see Appendix A). The accuracies for the
1s3p results are 0.003 eV for the singlet and 0.007 eV for the
triplet.

Some results for the p-state energy levels are worth noting.
The four p-state calculations agree quite well with

Fig. 2. Flow diagram for the excited states. After Eq. (11) is solved for E0

and u1s(i), Vx(i) and VC1s(i) are updated with the new u1s(i). After Eq. (12) is

solved for E00 and unl(i), Vx(i) and VCnl(i) are updated with the new unl(i).
The process is repeated until self-consistency is reached.

Table I. Experimental and calculated values for the energy levels of the he-

lium atom. All values are in units of—eV. The experimental values are from

Ref. 15. The energies listed in the “with screening” column are calculated

without the exchange potential in Eqs. (11) and (12). The energies listed in

the “þ exchange term” column are the complete calculation of Eqs. (11) and

(12).

Level 54.4178þ 13.6044/n2

With

screening

þ exchange

term Experiment

Ground state 68.022 77.87 – 79.005

2s(triplet) 57.82 58.58 59.16 59.19

2s(singlet) 57.82 58.58 – 58.39

2p(triplet) 57.82 57.85 58.00 58.04

2p(singlet) 57.82 57.85 57.75 57.79

3s(triplet) 55.929 56.137 56.280 56.287

3s(singlet) 55.929 56.137 – 56.085

3p(triplet) 55.929 55.940 55.988 55.998

3p(singlet) 55.929 55.940 55.908 55.918

3d(triplet) 55.929 55.930 55.930 55.931

3d(singlet) 55.929 55.930 55.930 55.931
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experiment. Also, in both cases, the singlet-triplet splitting
matches the data to the accuracy listed. The singlet-triplet
splitting for the 1s2p state can be compared with data from a
student laboratory experiment.19 It is interesting to note that
the exchange potential affects the singlet state different than
the triplet state. In the case of the 2p states, the binding
energy of the triplet is increased by 0.15 eV whereas for the
singlet state it is decreased by 0.10 eV. In first order pertur-
bation theory, the correction treated in textbooks, the
increase for the triplet state equals the decrease for the
singlet state. For the 2p (and 3p) singlet states, the amount of
Coulomb screening energy is approximately equal and oppo-
site to the exchange energy. The result is that simple screen-
ing for these states agrees quite well with the data. A
diagram of the results in Table I for the n¼ 2 level is shown
in Fig. 3.

VI. EXCITED d STATES

The results for the 3d excited states18 are listed in Table I.
It is seen that the exchange energy is small and that simple
screening gives approximately the same energy shift as the
complete screening calculation. Thus, for the 1s3d states,
singlet-triplet splitting is very small and simple screening
matches the data quite well. We estimate the numerical
accuracy of the 1s3d results to be 60.0007 eV, which is the
difference between the calculations for E using E ¼
E00 þ A0 þ B0 and E ¼ E0 þ Aþ B (see Appendix A). For
these states, the outer electron does not significantly screen
the inner one, and the inner electron almost completely
screens the nucleus for the outer one. This property for the
excited states 1snd, where n� 3, assists in the analysis of the
helium spectroscopic data.19

VII. EXCITED s STATES

One would like to apply the same method for the s-wave
excited states as was done with the p-wave and d-wave
states. Following the p and d excited states, the simplest
ansatz for the 1sns state, where n� 2, is

h~r1~r2jW12i¼
1ffiffiffi
2
p R1s r1ð ÞRns r2ð Þ6R1s r2ð ÞRns r1ð Þ
� �

: (14)

As with the excited p and d states, this form for W can be
substituted into the Hamiltonian eigenvalue equation.

However, a problem arises in that the two functions R1s and
Rns are not orthogonal in general. In the p-wave case, R1s

and RnpY1m were orthogonal due to the angular integral. In
the s-wave case, the two electrons have the same angular de-
pendence. The integral

Ð
R1sðrÞRnsðrÞr2 dr is not necessarily

zero. If R1s and Rns are not orthogonal, then there will be a
large number of cross terms in the differential equations,
which makes the calculation very difficult. All is not lost,
however, because for the triplet case the radial wave func-
tions turn out to be orthogonal (see Appendix C). In the case
of the triplet 1sns states the cross terms vanish, and one is
left with two solvable equations containing R1s(r) and Rns(r)

� �h2

2m

d2u1s rð Þ
dr2

� 2e2

r
u1s rð Þ þ VCns rð Þu1s rð Þ

� Vx rð Þuns rð Þ ¼ E0u1s rð Þ; (15)

� �h2

2m

d2uns rð Þ
dr2

� 2e2

r
uns rð Þ þ VC1s rð Þuns rð Þ

� Vx rð Þu1s rð Þ ¼ E00uns rð Þ: (16)

Note that only the �Vx term enters the equations.
In some ways, the triplet s-wave excited states are easier

to calculate than the p- and d-wave excited states. For the
s-wave excited states, both the screening and exchange
potentials are L¼ 0 spherically symmetric charge densities,
and therefore quite easy to determine from the electron wave
functions. Gauss’s law can be used to determine the poten-
tials VC1s, VCns, and Vx. Also, the l(lþ 1)/r2 piece is absent in
the equation for uns. The screening and exchange energies
are the largest of those for the excited states, and hence the
agreement with experiment is all the more convincing of the
effects of indistinguishable particles. The 1s2s energy agrees
to within 0.03 eV and the 1s3s to within 0.01 eV with the
triplet data.18 We estimate the numerical accuracy of the
1s2s triplet state to be 60.003 eV and of the 1s3s triplet state
to be 60.0009 eV, based on the difference between the cal-
culations for E using E ¼ E00 þ A0 þ B0 and E ¼ E0 þ Aþ B
discussed in Appendix A.

VIII. SUMMARY

Calculating excited states of atomic helium using coupled
Schr€odinger equations is an interesting exercise for under-
graduate physics students and can supplement textbook

Fig. 3. Diagram of the results in Table I for the n¼ 2 level. If the interaction between the two electrons is neglected, all the n¼ 2 levels are degenerate with a

binding energy of 57.82 eV. Including the Coulomb interaction of the two electrons with each other leads to a splitting of the l¼ 1 and l¼ 0 states, which we

calculate to be 0.73 eV. Including the effect of indistinguishable particles splits the singlet and triplet states, by an amount that we calculate for the 2p level to

be 0.25 eV.
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analyses. This approach is appealing because it builds on stu-
dents’ experience with the hydrogen atom, and because the
main approximation is that the state space is not the com-
plete space for identical particles. The simplest states to
apply this method to are the 1sns excited triplet states, since
the wave functions are spherically symmetric and one can
use Gauss’s law to find the exchange potential.

APPENDIX A: SCHR €ODINGER EQUATIONS FOR

HELIUM

The atomic states are solutions to Ĥ jW12i ¼ EjW12i, where

Ĥ ¼ p̂2
1

2m
þ p̂2

2

2m
þ V̂N1 þ V̂N2 þ V̂ 12 (A1)

is the nonrelativistic Hamiltonian operator for the two elec-
trons, and jW12i is the two electron state. The operators V̂N1

and V̂N2 are the Coulomb potential energy operators for each
electron due to the nucleus, while V̂12 is the Coulomb poten-
tial energy operator for the interaction between the two elec-
trons. We are neglecting any terms in Ĥ that depend directly
on spin.

In order to obtain the Schr€odinger differential equation(s)
from the operator equation, we start with the ground state of
helium. One needs to use a coordinate space basis to cast the
operator equation into a spatial differential equation. For a
start, we choose jW12i ¼ jw1si1jw1si2jS ¼ 0i12, since the
ground state has spin zero. The spin state jS ¼ 0i12 changes
sign upon particle exchange, and the product jw1si1jw1si2 is
the simplest choice that is symmetric upon particle
exchange. In coordinate space, we have for this choice

h~r1~r2jW12i ¼ h~r1jw1si1h~r2jw1si2
¼ R1sðr1ÞY00ðX1ÞR1sðr2ÞY00ðX2Þ: (A2)

We first apply the bra h~r1jhw1sj2 to both sides of Eq. (A1).
Then, by multiplying by Y00(X1) and integrating over X1 on
both sides we can project out the radial function R1s(r1). For
the term on the right, we haveð

h~r1jhw1sj2 EjW12iY00ðX1ÞdX1 ¼ ER1sðr1Þ: (A3)

The results for each term on the left are as follows:ð
h~r1jhw1sj2

p̂2
1

2m
jW12iY00 X1ð ÞdX1

¼ � �h2

2m

ð
r2

1ðR1s r1ð ÞY00 X1ð ÞdX1

¼ � �h2

2m

1

r2
1

d

dr1

r2
1

dR1s r1ð Þ
dr1

� �
; (A4)

ð
h~r1jhw1sj2

p̂2
2

2m
jW12iY00 X1ð ÞdX1

¼ hw1sj
p̂2

2m
jw1siR1s r1ð Þ � AR1s r1ð Þ; (A5)

ð
h~r1jhw1sj2 V̂N1jW12iY00 X1ð ÞdX1¼�

2e2

r1

R1s r1ð Þ; (A6)

ð
h~r1jhw1sj2 V̂N2jW12iY00 X1ð ÞdX1

¼ �hw1sj
2e2

r
jw1siR1s r1ð Þ � BR1s r1ð Þ; (A7)

ð
h~r1jhw1sj2 V̂12jW12iY00 X1ð ÞdX1

¼
ð

e2Y	00 X2ð ÞR
	
1s r2ð ÞR1s r2ð Þ
j~r1 �~r2j

Y00 X2ð ÞY00 X1ð Þ

� dX1dX2r2
2dr2 R1s r1ð Þ � VC1s r1ð ÞR1s r1ð Þ: (A8)

Substituting these terms into the Hamiltonian eigenvalue
equation (A1) yields the following Schr€odinger equation:

� �h2

2m

1

r2
1

d

dr1

r2
1

dR1s r1ð Þ
dr1

� �
� 2e2

r1

R1s r1ð Þ

þ VC1s r1ð ÞR1s r1ð Þ ¼ E� A� Bð ÞR1s r1ð Þ; (A9)

where A and B are defined in the previous equations. The
quantity A is the expectation value of kinetic energy, and B
is the expectation value of the nucleus-electron Coulomb
energy for one of the 1s electrons.

It is convenient to use the function u1s(r1)� r1R1s(r1). For
brevity, we write r1 as simply r, and the Schr€odinger equa-
tion becomes16

� �h2

2m

d2u1s rð Þ
dr2

� 2e2

r
u1s rð Þ þ VC1s rð Þu1s rð Þ ¼ E0u1s rð Þ;

(A10)

where E0 � E� A� B. In terms of u1s, A and B are simply

A ¼ � �h2

2m

ð
u1s r0ð Þ d

2u1s r0ð Þ
dr02

dr0 (A11)

and

B ¼ �2e2

ð
u2

1s r0ð Þ
r0

dr0; (A12)

since u1s(r) is real. The potential VC1s(r) is the average electro-
static potential due to the other electron, and we discuss how
to obtain it in Appendix B. For the ground state, VC1s(r) is just
the electrostatic potential due to a spherical charge distribution
with charge density qðrÞ ¼ R2ðrÞ=ð4pÞ ¼ u2ðrÞ=ð4pr2Þ.

Next, we derive the coupled Schr€odinger equations for the
excited nl states. For these excited states, one electron is in
the 1s state, and one electron is in the nl state. Since the elec-
trons are in different spatial states, their spins can combine
to be spin zero, jS ¼ 0i12, or spin one, jS ¼ 1i12. The spin-
zero combination changes sign upon particle exchange, and
the spin-one combination does not.

For simplicity, we take the following forms for the excited
singlet and triplet states:

jW12i ¼
1ffiffiffi
2
p jw1si1jwnli2 þ jwnli1jw1si2
� �

jS ¼ 0i12;

(A13)

jW12i ¼
1ffiffiffi
2
p jw1si1jwnli2 � jwnli1jw1si2
� �

jS ¼ 1i12;

(A14)
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where both change sign under particle exchange. The state

jw1si is an eigenstate of L̂
2

with eigenvalue zero, and jwnli is

an eigenstate of L̂
2

with eigenvalue �h2lðlþ 1Þ. Thus,
hw1sjwnli equals 0 if l 6¼ 0. We discuss the excited s states in
Appendix C. As with the ground state, we will be working in
coordinate space to cast the eigenvalue problem into a differ-
ential equation. In coordinate space, we have for this choiceffiffiffi

2
p
h~r1~r2jW12i ¼R1sðr1ÞY00ðX1ÞRnlðr2ÞYlmðX2Þ

6R1sðr2ÞY00ðX2ÞRnlðr1ÞYlmðX1Þ:
(A15)

There are two spatial functions, R1s(r) and Rnl(r), to be deter-
mined. We can produce a differential equation for each func-
tion by taking the inner product of each side of Eq. (A1)
with the appropriate bra. The differential equation for the 1s
radial function, R1s(r), is obtained in a similar way as with
the ground state. First, operate on both the right and left sides
of Eq. (A1) with the bra

ffiffiffi
2
p
h~r1j hwnlj2. Then, multiply both

sides by Y00(X1) and integrate over X1 to project out R1s(r1).
For the right side of Eq. (A1), we have

ffiffiffi
2
p ð

h~r1j hwnlj2 EjW12iY00ðX1Þ dX1 ¼ ER1sðr1Þ: (A16)

Since hwnljw1si ¼ 0 for l 6¼ 0 and hwnljwnli ¼ 1, we have
hwnlj2 W12i ¼ ð1=

ffiffiffi
2
p
Þjw1si1 yielding the simple result on the

right side.
Multiplying by Y00(X1) and integrating over X1 simplifies

the left side of Eq. (A1) as well. Working out the terms we
obtain

ffiffiffi
2
p ð

h~r1j hwnlj2
p̂2

1

2m
jW12iY00 X1ð Þ dX1

¼ � �h2

2m

1

r2
1

d

dr1

r2
1

dR1s r1ð Þ
dr1

� �
; (A17)

ffiffiffi
2
p ð

h~r1j hwnlj2
p̂2

2

2m
jW12iY00 X1ð Þ dX1

¼ hwnlj
p̂2

2m
jwnliR1s r1ð Þ � AR1s r1ð Þ; (A18)

ffiffiffi
2
p ð

h~r1j hwnlj2 V̂N1jW12iY00 X1ð Þ dX1 ¼ �
2e2

r1

R1s r1ð Þ;

(A19)

ffiffiffi
2
p ð

h~r1j hwnlj2 V̂N2jW12iY00 X1ð Þ dX1

¼ �hwnlj
2e2

r
jwnliR1s r1ð Þ � BR1s r1ð Þ; (A20)

ffiffiffi
2
p ð

h~r1j hwnlj2 V̂12jW12iY00 X1ð Þ dX1

¼
ð

e2Y	1m X2ð Þ
R	nl r2ð ÞRnl r2ð Þ
j~r1 �~r2j

Y1m X2ð ÞY00 X1ð Þ

� Y00 X1ð Þ dX1 dX2 r2
2 dr2 R1s r1ð Þ

6

ð
e2Y	1m X2ð ÞR

	
nl r2ð ÞR1s r2ð Þ
j~r1 �~r2j

Y00 X2ð ÞY1m X1ð Þ

� Y00 X1ð Þ dX1 dX2 r2
2 dr2 Rnl r1ð Þ: (A21)

We make use of the identity

1

j~r1 �~r2j
¼
X

lm

4p
2lþ 1

Y	lm X1ð ÞYlm X2ð Þ rl
<

rlþ1
>

(A22)

to handle the two integrals in the last expression. After inte-
grating over all angles, each integral becomes a “potential
function” (see Appendix B). One potential function is due to
electrostatic screening, which we label in this case as
VCnl(r1). The other function is referred to as an exchange
interaction, which we label as Vx(r1). Putting all the terms to-
gether, we have a differential equation that contains R1s(r)
and Rnl(r)

� �h2

2m

1

r2
1

d

dr1

r2
1

dR1s r1ð Þ
dr1

� �
� 2e2

r1

R1s r1ð Þ

þ VCnl r1ð ÞR1s r1ð Þ6VxRnl r1ð Þ ¼ E� A� Bð ÞR1s r1ð Þ:
(A23)

As with the ground state, for brevity we replace r1 with r
and define u(r)¼ rR(r). With these substitutions, we end
up with the differential equation that we will solve
numerically

� �h2

2m

d2u1s rð Þ
dr2

� 2e2

r
u1s rð Þ þ VCnl rð Þu1s rð Þ

6Vx rð Þunl rð Þ ¼ E0u1s rð Þ; (A24)

where E0 � E� A� B. In terms of unl, A and B are

A ¼ � �h2

2m

ð
unl r0ð Þ d2unl r0ð Þ

dr02
� l lþ 1ð Þunl

r02

� �
dr0 (A25)

and

B ¼ �2e2

ð
u2

nl r0ð Þ
r0

dr0; (A26)

since unl(r) is real.
In Eq. (A24), there are two functions to be determined,

u1s(r) and unl(r), so we need another equation. A differen-
tial equation that contains derivatives of unl(r) can be
obtained in a similar manner as we did for u1s(r). First, we
apply the bra

ffiffiffi
2
p
h~r1hw1sj2 to each side of the Hamiltonian

eigenvalue equation. Then we multiply each side of the
equation by Y	lmðX1Þ and integrate over X1 to project
out Rnl(r1). Similar to the R1s(r1) case, the right side of Eq.
(A1) becomes

ffiffiffi
2
p ð

h~r1j hw1sj2 EjW12iY	lmðX1Þ dX1 ¼ ERnlðr1Þ: (A27)

For the terms on the left side of Eq. (A1), we obtain the fol-
lowing results:

ffiffiffi
2
p ð

h~r1j hw1sj2
p̂2

1

2m
jW12iY	lm X1ð Þ dX1

¼ � �h2

2m

1

r2
1

d

dr1

r2
1

dRnl r1ð Þ
dr1

� �
�

l lþ 1ð ÞRnl r1ð Þ
r2

1

" #
;

(A28)
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ffiffiffi
2
p ð

h~r1j hw1sj2
p̂2

2

2m
jW12iY	lm X1ð Þ dX1

¼ hw1sj
p̂2

2m
jw1siRnl r1ð Þ � A0Rnl r1ð Þ; (A29)

ffiffiffi
2
p ð

h~r1j hw1sj2 V̂N1jW12iY	1m X1ð Þ dX1 ¼ �
2e2

r1

Rnl r1ð Þ;

(A30)

ffiffiffi
2
p ð

h~r1j hw1sj2 V̂N2jW12iY	lm X1ð Þ dX1

¼ �hw1sj
2e2

r
jw1siRnl r1ð Þ � B0Rnl r1ð Þ; (A31)

ffiffiffi
2
p ð

h~r1j hw1sj2 V̂12jW12iY	lm X1ð Þ dX1

¼
ð

e2Y	00 X2ð ÞR
	
1s r2ð ÞR1s r2ð Þ
j~r1 �~r2j

Y00 X2ð ÞYlm X1ð Þ

� Y	lm X1ð Þ dX1 dX2 r2
2 dr2 Rnl r1ð Þ

6

ð
e2Y	00 X2ð ÞR

	
1s r2ð ÞRnl r2ð Þ
j~r1 �~r2j

Ylm X2ð ÞY00 X1ð Þ

� Y	lm X1ð Þ dX1 dX2 r2
2 dr2 R1s r1ð Þ: (A32)

The two integrals in the last expression can be simplified,
as shown in Appendix B. After integrating over angles, one
is left with two potential functions as before. One potential
function is due to electrostatic screening from the 1s elec-
tron, which we label in this case as VC1s(r1). The other func-
tion is an exchange interaction, which we label as Vx(r1), and
is the same as in the equation for u1s. Putting all the terms to-
gether, we have a second differential equation that contains
Rnl(r) and R1s(r)

� �h2

2m

1

r2
1

d

dr1

r2
1

dRnl r1ð Þ
dr1

� �
� l lþ 1ð Þ

r2
1

Rnl r1ð Þ

" #

� 2e2

r1

Rnl r1ð Þ þ VC1s r1ð ÞRnl r1ð Þ6VxR1s r1ð Þ

¼ E� A0 � B0ð ÞRnl r1ð Þ: (A33)

As with the ground state, we can replace r1 with r and
define u(r)¼ rR(r). With these substitutions, we end up with
the differential equation that we will solve numerically

� �h2

2m

d2unl rð Þ
dr2

� l lþ 1ð Þ
r2

unl rð Þ
� �

� 2e2

r
unl rð Þ

þ VC1s rð Þunl rð Þ6Vx rð Þu1s rð Þ ¼ E00unl rð Þ; (A34)

where E00 � E� A0 � B0. In terms of u1s; A0 and B0 are

A0 ¼ � �h2

2m

ð
u1s r0ð Þ d

2u1s r0ð Þ
dr02

dr0 (A35)

and

B0 ¼ �2e2

ð
u2

1s r0ð Þ
r0

dr0; (A36)

since u1s(r) is real.

We note that for the excited 1snl states, there are two
ways to obtain the energy E: E ¼ E00 þ A0 þ B0 and E ¼ E0

þAþ B. By comparing the two values for E, E00 þ A0 þ B0

with E0 þ Aþ B, we can check on the numerical accuracy of
the calculation.

APPENDIX B: SCREENING AND EXCHANGE

POTENTIALS

The screening and exchange potentials are critical ingre-
dients in the coupled Schr€odinger equations for the atomic
states of helium. We are interested in helium atomic states
that have l¼ 0 for at least one electron. For these atomic
states, the screening and exchange potentials each contain
only one term, simplifying the calculations. We obtain the
potentials by using the identity

1

j~r1 �~r2j
¼
X
LM

4p
2Lþ 1

rL
<

rLþ1
>

Y	LM X1ð ÞYLM X2ð Þ; (B1)

where r< is the smaller of r1 and r2, and r> is the larger of r1

and r2.
Consider first the screening potential VCnl, when the nl

electron screens out the 1s electron in Eq. (A24). From
Appendix A, VCnl is proportional to the following
integral:

VCnl r1ð Þ /
ð

Rnl r2ð ÞY	lm X2ð Þ 1

j~r1 �~r2j
Rnl r2ð Þ

� Ylm X2ð ÞY00 X1ð ÞY	00 X1ð Þr2
2 dX1 dX2 dr2:

(B2)

After integrating over X1, only the L¼ 0 term in the expres-
sion for 1=j~r1 �~r2j survives, leaving the following integral
over the~r2 coordinate:

VCnl r1ð Þ /
ð

Rnl r2ð ÞY	lm X2ð Þ 1

r>
Y00 X2ð ÞRnl r2ð Þ

� Ylm X2ð Þr2
2 dX2 dr2: (B3)

After integrating over the angle X2, we are left with the inte-
gral over r2

VCnl r1ð Þ /
ð

R2
nl r2ð Þ

1

r>
r2

2 dr2; (B4)

since Y00 is a constant and Rnl(r2) is real. We can replace r1

with r and r2 with r0 to give

VCnl rð Þ /
ð

R2
nl r0ð Þ 1

r>
r02dr0: (B5)

If r > r0 then r>¼ r, and if r0 > r then r> ¼ r0. We note that
this integral is proportional to the electrostatic potential due
to a spherically symmetric charge distribution of density

R2
nlðr0Þ.
Now consider the other screening potential. When the 1s

electron screens out the nl electron in Eq. (A34), the screen-
ing potential for the radial component is determined from the
following integral:
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VC1s r1ð Þ /
ð

R	1s r2ð ÞY	00 X2ð Þ 1

j~r1 �~r2j
R1s r2ð Þ

� Y00 X2ð ÞYlm X1ð ÞY	lm X1ð Þr2
2 dX1 dX2 dr2:

(B6)

In this case, one integrates first over X2 and only the L¼ 0
term in the expression for 1=j~r1 �~r2j survives, leaving the
following integral:

VC1s r1ð Þ /
ð

R	1s r2ð Þ
1

r>
R1s r2ð ÞYlm X1ð ÞY	lm X1ð Þr2

2 dX1 dr2:

(B7)

Integrating over X1 and using the orthogonality property of
the spherical harmonics gives

VC1s r1ð Þ /
ð

R	1s r2ð Þ
1

r>
R1s r2ð Þr2

2 dr2: (B8)

We can replace r1 with r and r2 with r0 to give

VC1s rð Þ /
ð

R2
1s r0ð Þ 1

r>
r02 dr0: (B9)

As before, VC1s(r) is the electrostatic potential from a
spherical charge distribution with density proportional to
R2

1s.
Since the Coulomb screening potentials VC1s(r) and

VCnl(r) are electrostatic potentials from spherically symmet-
ric charge distributions, they are relatively easy to determine
numerically. One doesn’t need to work out the integral,
but can instead use Gauss’s law, which gives ~EðrÞ ¼ EðrÞr̂
/ ðQ<r=r2Þr̂ for a spherically symmetric charge distribution,
where Q< r is the charge contained inside a sphere of
radius r. Since E(r)¼�dV /dr, the potential satisfies the dif-
ferential equation

dV

dr
/ �Q<r

r2
; (B10)

with the boundary condition that for values of r outside the
atom V(r)¼ e2/r. Numerically, V(i) can be computed by first
setting the charge Q and V(0) equal to zero. If i is increased
in a loop from 1 out to imax, the following two lines of code,
Q Qþ u(i)2D and V (i) V (i � 1) � eQ[D/r(i)]/r(i), will
update the charge less than r and the Coulomb potential V(i).
Adding the constant e2/r(imax) � V (imax) to all V(i) will give
the correct boundary condition V (r!1)! e2/r.18

Now consider the exchange potential for an nl excited
state. The potential is proportional to the integral

Vx r1ð Þ /
ð

R	1s r2ð ÞY	00 X2ð Þ 1

j~r1 �~r2j
Rnl r2ð Þ

� Ylm X2ð ÞY00 X1ð ÞY	lm X1ð Þr2
2 dX1 dX2 dr2:

(B11)

After integrating over X1, only the L¼ l term in the expres-
sion for 1=j~r1 �~r2j survives, leaving the following integral
over the~r2 coordinate:

Vx r1ð Þ /
ð

R	1s r2ð ÞY	00 X2ð Þ rl
<

rlþ1
>

Y	lm X2ð Þ

� Rnl r2ð ÞYlm X2ð Þr2
2 dX2 dr2: (B12)

Integrating over X2 yields

Vx r1ð Þ /
ð

R	1s r2ð Þ
rl
<

rlþ1
>

Rnl r2ð Þr2
2 dr2; (B13)

since Y00 is a constant. Replacing r1 with r and r2 with r0, we
have

Vx rð Þ /
ð

R1s r0ð ÞRnl r0ð Þ rl
<

rlþ1
>

r02 dr0; (B14)

since the radial functions are real. Note that the exchange
potential is the same for u1s and unl.

Determining the exchange potential by carrying out this
integral can be computationally intensive because for every
value of r, one needs to integrate r0 out to infinity. For the
Coulomb screening potentials, VC1s and VCnl, one can use
Gauss’s law. However, for the exchange potential there is
another factor of l in the integral, and one would need to
solve the integral for Vx(r).

We use another method for obtaining Vx, which requires
solving a differential equation rather than an integral. The
potential Vx is a solution to Poisson’s equation for angular
momentum l and charge density proportional to R1s(r)Rnl(r)

1

r2

d

dr
r2 dVx rð Þ

dr

� �
� l lþ1ð Þ

r2
Vx rð Þ¼R1s rð ÞRnl rð Þ: (B15)

If we let Ri(r)¼ ui(r)/r and Vx(r)¼wx(r)/r, the equation sim-
plifies to

d2wx rð Þ
dr2

� l lþ 1ð Þ
r2

wx rð Þ ¼ u1s rð Þunl rð Þ
r

: (B16)

The boundary conditions on wx are wx(0)¼ 0 and wx(r !
1)! Ql/r

l, where

Ql ¼
ð

u1s r0ð Þunl r0ð Þ
2lþ 1

r0l dr0; (B17)

which determines the proportionality constant.
In our code, we iterate out two solutions wA(r) and wB(r),

where wA(0)¼wB(0)¼ 0 and wA(1) is different than wB(1).
The potential wx is a linear combination of wA and wB:
wx(r)¼ awA(r)þ bwB(r). The constants a and b are deter-
mined by the boundary conditions at large r. To do this, we
pick two values of r: r1 and r2, which are far outside the
charge distribution. The two equations for these r values,

Ql

rl
1

¼ awA r1ð Þ þ bwB r1ð Þ; (B18)

Ql

rl
2

¼ awA r2ð Þ þ bwB r2ð Þ; (B19)

can be solved for the constants a and b

a ¼ Ql

rl
2wB r2ð Þ � rl

1wB r1ð Þ
rl

1rl
2 wA r1ð ÞwB r2ð Þ � wA r2ð ÞwB r1ð Þð Þ

; (B20)

b ¼ Ql

rl
1wA r1ð Þ � rl

2wA r2ð Þ
rl

1rl
2 wA r1ð ÞwB r2ð Þ � wA r2ð ÞwB r1ð Þð Þ

: (B21)
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The potential is given by

Vx rð Þ ¼ awA rð Þ þ bwB rð Þ
r

: (B22)

As a check one can calculate the two screening potentials
in the same manner as the exchange potential Vx(r). The only
difference in the calculation is that the “exchange density”
R1s(r)Rnl(r) is replaced by the “screening density” R2

1sðrÞ or
R2

nlðrÞ. Whereas the Coulomb screening potentials are fairly
easy to obtain using Gauss’s law, the exchange potential is
not. However, the use of Poisson’s equation makes the
helium problem tractable as an undergraduate physics stu-
dent exercise.

APPENDIX C: ORTHOGONALITY OF 1sns TRIPLET

RADIAL FUNCTIONS

We have been considering the following ansatz for the
excited states of helium:

jW12i ¼
1ffiffiffi
2
p jw1si1jwnli26jwnli1jw1si2
� �

: (C1)

The simple separation into two coupled differential equa-
tions carried out in Appendix A required hw1sjwnli to equal
zero. If this is the case, then the only term that couples the
two differential equations is the exchange potential, and
the excited-state energies can be obtained as described in the
text. If l 6¼ 0, that is, for the excited p and d states, the inte-
gral over angle X yields zero due to the orthogonality of
the spherical harmonics. However, for excited s states the
angular integral is not zero and the radial functions must be
orthogonal to make h1sjnsi ¼ 0. Here, we show that for the
1sns triplet excited states, the coupled differential equations
are consistent with h1sjnsi ¼ 0.

The inner product h1sjnsi is proportional to
Ð

R1sðrÞ
RnsðrÞr2 dr, or in terms of the functions uðrÞ ¼ rRðrÞ;
h1sjnsi is proportional to

Ð
u1sðrÞunsðrÞ dr. Suppose u1s(r)

and uns(r) are solutions to the desired coupled Schr€odinger
equations,

d2u1s rð Þ
dr2

� 2e2

r
u1s rð Þ þ e2

ð
uns r0ð Þuns r0ð Þ
j~r �~r0 j

dX0 dr0 u1s rð Þ

6e2

ð
u1s r0ð Þuns r0ð Þ
j~r �~r0 j

dX0 dr0 uns rð Þ ¼ E1u1s rð Þ ðC2Þ

and

d2uns rð Þ
dr2

� 2e2

r
uns rð Þ þ e2

ð
u1s r0ð Þu1s r0ð Þ
j~r �~r0 j

dX0 dr0 uns rð Þ

6e2

ð
u1s r0ð Þuns r0ð Þ
j~r �~r0 j

dX0 dr0 u1s rð Þ ¼ E2uns rð Þ; ðC3Þ

as derived in Appendix A. The energies are E1¼E � A � B
and E2 ¼ E� A0 � B0, where A, B, A0, and B0 are defined in
Appendix A. Note that in general E1 6¼E2.

We show next that the triplet state (�sign) solution is con-

sistent with
Ð

u1sðrÞunsðrÞ dr ¼ 0. Start by multiplying Eq.

(C2) by uns(r) and integrate over r

ð
uns rð Þd

2u1s rð Þ
dr2

dr�
ð

uns rð Þ2e2

r
u1s rð Þdr

þ e2

ð ð
uns r0ð Þuns r0ð Þ
j~r �~r0 j

dX0 dr0 u1s rð Þuns rð Þdr

6 e2

ð ð
u1s r0ð Þuns r0ð Þ
j~r �~r0 j

dX0 dr0 uns rð Þuns rð Þdr

¼ E1

ð
u1s rð Þuns rð Þdr: (C4)

Note that the double integrals are actually equal to each
other. Since both u1s and uns do not depend on angle, only
the l¼ 0 term in 1=j~r ¼ ~r0 j survives the integration over X0.
Also j~r �~r0 j ¼ j~r0 �~rj, and after integrating over X0, the
screening double integral equalsð ð

uns r0ð Þuns r0ð Þuns rð Þu1s rð Þ
r>

dr dr0 (C5)

and the exchange double integral equalsð ð
u1s r0ð Þuns r0ð Þuns rð Þuns rð Þ

r>
dr dr0; (C6)

and these are equal to each other because we can interchange
r and r0 in either integral. Thus, for the triplet case the double
integrals cancel and Eq. (C4) reduces toð

uns rð Þ d
2u1s rð Þ
dr2

dr �
ð

uns rð Þ 2e2

r
u1s rð Þ dr

¼ E1

ð
u1s rð Þuns rð Þ dr: (C7)

If we multiply Eq. (C3) by u1s and integrate over r as we
did with Eq. (C2), the double integrals will also cancel for
the triplet case. Equation (C3) reduces toð

u1s rð Þ d
2uns rð Þ
dr2

dr �
ð

u1s rð Þ 2e2

r
uns rð Þ dr

¼ E2

ð
uns rð Þu1s rð Þ dr: (C8)

If we subtract Eqs. (C7) and (C8), the kinetic energy terms
cancel

ð
uns rð Þ d

2u1s rð Þ
dr2

dr ¼ �
ð

duns

dr

du1s

dr
dr

¼
ð

u1s rð Þ d
2uns rð Þ
dr2

dr; (C9)

where we have integrated by parts twice and used
u1s(1)¼ uns(1)¼ 0. Also, the Coulomb potential terms
cancel in the subtraction

ð
2e2uns rð Þu1s rð Þ

r
dr �

ð
2e2u1s rð Þuns rð Þ

r
dr ¼ 0: (C10)

Thus, after integrating and subtracting the two equations
one is left with
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ðE1 � E2Þ
ð

u1sðrÞunsðrÞ dr ¼ 0: (C11)

Since E1 6¼E2, the two radial triplet wave functions must be
orthogonal.

In the case of the singlet, the þ sign between the screening
and exchange term results in an addition of these two equal
double integral terms in Eq. (C4). However, the double inte-
gral resulting from Eq. (C2) contains the product
u2ðr0Þu2ðr0Þu2ðrÞu1ðrÞ, whereas the double integral term
resulting from Eq. (C3) has the product u1ðr0Þu1ðr0Þ
u1ðrÞu2ðrÞ. These two products are not in general equal and
do not cancel in the subtraction of the two equations. After
subtracting the equations, we are left with

E1 � E2ð Þ
ð

u1s rð Þuns rð Þ dr

¼ 2

ð ð
u1s r0ð Þuns r0ð Þuns rð Þuns rð Þ

r>
dr dr0

�2

ð ð
uns r0ð Þu1s r0ð Þu1s rð Þu1s rð Þ

r>
dr dr0; (C12)

and
Ð

u1sðrÞunsðrÞ dr 6¼ 0 in general for the solutions to Eqs.
(C2) and (C3) with the þ sign (i.e., singlet excited s states).
In this case, the coupled differential equations will have
many cross terms, making the calculation too difficult for an
undergraduate exercise.
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