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T ranscendental numbers such as
pi and the natural logarithm e
are introduced in mathematics classes,
where their mathematical origins and
series expansions are presented. How-
ever, these numbers find their way into
physics equations, where quite often
they carry some physical significance.
Usually they are taken to be their mathe-
matical value and used to determine
other physical quantities. Taking a dif-
ferent point of view, we thought it would
be interesting to think of ways to di-
rectly measure transcendental as well as
irrational numbers. That is, what physi-
cal quantities could we measure to de-
termine =, e, and V27 For \/2_, the chal-
lenge was to determine its value without
any measuring device, compass, or
straightedge.

Measuring mathematically known
numbers is not a trivial exercise. The
students need to determine the essential
physical conditions necessary to pro-
duce these special unitless numbers.
Since measurements are made, uncer-
tainties will result. Any differences in
the expected mathematical values can
lead to discussions about error analysis.
If the measured values are systemati-
cally different from the expected ones,
the students are challenged to figure out
what went wrong. In this article, we
present some ways in which we tried to
measure T, e, and \/2_ and some of the
difficulties we encountered.

Measuring 2

What happens to the motion of a
system if all its dimensions are doubled?
The answer to this question provides a
method to measure V2 without using
any measuring devices. The key physics
is the following: for systems in which
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the potential energy is proportional to
the size of the system, the time of the
motion will scale as the square root of
the spacial dimensions. This result
comes from Newton’s second law,
which has a second derivative of posi-
tion with respect to time. Projectile mo-
tion, objects rolling without slipping
down hills, and pendulums, all without
air friction, are examples of a few sys-
tems where this scaling applies. In the
case of a simple pendulum of length /,
the period of the motion is proportional
to \/T/_g_ a result that can also be ob-
tained from dimensional analysis.l For
a pendulum with a bob of radius 7, the
rotational motion of the bob needs to be
included, and the period is proportional
to VI[1+%5(r/)*]/g. Thus, examin-
ing the period of two pendulums, one
exactly twice the size of the other, will
allow a direct measurement of V2.

The procedure to measure V2 is as
follows: a) set up two pendulums, one
being twice the size of the other. Each
pendulum will be observed by a differ-
ent person. b) Both observers start their
pendulums at the same time and count
the number of oscillations over the same
time interval. The V2 is the ratio of the
number of counts of the two observers.

The pendulums can be set up as
shown in Fig. 1, one with a spherical
bob roughly twice the size of the other.
First, the two are hung so the distances
from the pivot point to the center of the
bobs are the same. With this length
marked on the one with the smaller bob,
it is moved to another holder. Then the
string is doubled over the pivot until it
reaches the center of the bob (see Fig.
1b). This second pendulum then will
have a length approximately one-half
that of the first. To have a doubling of
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Fig. 1. Setup for constructing one pendu-
lum to be half the size of another. First
start them with the same length, then wrap
the string of the smaller bob around the
pivot till it comes to the center of the bob.

scale, the initial angle should be the
same for both pendulums. We note that
in the absence of air friction, the initial
starting angle need not be small to ob-

tain V2.
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Table I.

Counts for short

Approximate length Counts for long Ratio
of long pendulum pendulum pendulum
80 cm 100 141%4 1.4175
100 cm 100 143 1.43
120 cm 100 141 1.41
140 cm 100 142Y4 1.4225
141 1.41

170 cm 100

We followed this procedure for dif-
ferent lengths of the long pendulum; our
results are shown in Table I.

The experimenter watching the
longer pendulum shouted “Stop” after
counting 100 complete oscillations, and
the other experimenter counted to the
nearest quarter oscillation. The results
are within 1% of 1.414..., the value ex-
pected. Most likely the largest source of
error is in obtaining the factor of 2 in the
length. A 1% uncertainty in the period
would result from a 2% uncertainty in
the length of a simple pendulum. An-
other possibility is air friction, since its
effects do not scale with length. Even
though we started our pendulums at a
small angle to reduce this effect, at some
level of accuracy the effect of air fric-
tion will be important. As can be seen in
Table I, the property of scaling applies
since the results are independent of the
length of the pendulums.

Measuring the Natural
Logarithm e

One way to determine the natural
logarithm e s to measure quantities that
decay exponentially in time. The key
physical principle is that the rate of
change of a quantity is proportional to
the quantity itself. We investigated ca-
pacitor discharge and radioactive decay.
In the case of capacitor discharge, we
measured the current in an RC circuit at
equal time intervals. A graph of the data
can be used to illustrate how to deter-
mine e. In Fig. 2 we plot the current in
a series RC plus ammeter circuit as a
function of time. The value of C is |
farad, R is 200 ohms, and readings of the
current were taken every 10 seconds
using a digital ammeter. The value of e
can be found as follows: a) Pick any data
point on the graph and construct a tan-

gent to the curve; b) follow the tangent
line down to the horizontal axis and
mark the intersection point. The natural
logarithm base e is (the current of the
original point)/(the current of the inter-
section point). This can be seen by re-
ferring to Fig. 2. The decay of the cur-
rent is described by

Cry = Ce™Y

where C(1) is the current at time ¢, and
C,; is the current at the time of the i’th
reading, ¢;. The slope of the tangent at ¢,
is given by

dC(t)
dr |t=t‘. = MG

Thus we can deduce that the tangent line
intercepts the r-axis at the value r; +
1/A. Using this result in the above equa-
tion yields

This procedure can be done numerically
from the data, or by drawing the appro-
priate lines on the graph as shown in
Fig. 2. This method is not perfect, since
there is some systematic error associ-
ated with taking data at finite time inter-
vals. The error is easily estimated to
give a percent error in determining e of
In (\/2_) AT/, where AT is the time in-
terval and 7 is the half-life of the decay.
For our capacitor decay experiments,
this introduced an error of 1.7%.

Using the data from the capacitor
discharge we determined e numerically
from the measured currents. This can be
done by first calculating the intersection
point x, and then using linear interpola-
tion to find the value of the current at
this point. As before, we let C; be the
current of the i’th reading. Then, x can
be obtained from the slope of C; and
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Fig. 2. Determining the natural logarithm e from the data.
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The value x will usually lie between
readings, and we can use linear interpo-
lation to find an approximate value of
the current at x. Let n be the n’th data
point just before x, and C, be the value

of the current at x, as shown in Fig. 2.
Then using similar triangles we have:

C,=C. _x-n
Cn_Cn+l !

which gives
C, =C+Gx-m(C,, ,-C) (2

Thus e is given by the expression

<. g )

¢, C+x-m(C,,-C)

e =
n

A computer program was written to
assist in the calculation of e from the
data. The results of our measurements
using different resistors are shown in
Table II.

We calculated e for each i from i = 1
until n + 1 was larger than our last data
point. The number of points used for
each experiment is listed in column 2.
The average value is shown in column
3 along with the standard deviation. We
used two 150-Q resistors, and investi-
gated the affect of the ammeter on the
first one. For this resistor, both amme-
ters gave similar results.

It is interesting to note that for the
second 150-Q resistor we obtained a

value of e = 2.42 + 0.06. What could
have caused the result to be different
from 2.71...7 The final result does not
depend on the value of R, the value of
C, the initial charge on the capacitor, nor
the internal resistance of the ammeter. If
the ammeter is off by a scaling factor,
this should also not effect our final an-
swer for e. It is these insensitivities to
the systems parameters that make the
number e so special. The only thing that
can cause a different value for e are
nonlinearities in the circuit. If the resis-
tance or capacitance depends on the cur-
rent, then the differential equation de-
scribing the circuit will be nonlinear.
For example, a possible nonlinear con-
tribution would be a capacitor leaking

“Transcendental Measurementation”

Natural Log e
and standard deviation

2.75+£0.04

2.66 +0.08
2.73 £0.06

Table II.
Experiment
Capacitor Discharge Data points
C =1 farad used
R=100Q 16
R=150Q:
Fluke Ammeter 29
Beckman Ammeter 28
R=200Q 27

R=150Q 17

Radioactive Decay
of Barium 137

with a current that is not proportional to
the charge. Any difference in the meas-
urement of e from 2.71... will thus be a
measure of the amount of nonlinearity
in the circuit, which in our case was less
than 2%. Thus it is important that the
ammeter be kept on the same scale
throughout the entire experiment. We
believe that the problem lies with the
resistor we used, since for other resistors
our values for e lie within the expected
value.

For the radioactive decay, we exam-
ined the decay of 137Ba from the com-
mon “Cesium Cow” experiment often
used in the classroom. The data were not
as smooth as in the capacitor discharge
case due to statistical fluctuations, and
we had to use the graphical method to
obtain an approximate value for e. Our
values ranged between 2.55 and 2.74.

Measuring ©t

Measuring = is very easy, since it is
just the ratio of the circumference to the
diameter of a circle. This well-known
exercise is probably best suited for a
seventh-, eighth-, or ninth-grade class.
The students measure the circumfer-
ence and diameter of an assortment of
circular objects. The data can be ana-
lyzed in various ways. You could graph
the diameter D on the x-axis and the
circumference C on the y-axis and use
this experiment as an introduction to
graphing. For more advanced classes,
errors in D and C can be included in the
graph and uncertainties in determining
the slope discussed. The students could
also divide C by D for each object, and

2.65%0.11
242 +0.06

2.55t0 2.74

then calculate an average value and
standard deviation for 1. Another possi-
bility is to use this experiment to present
propagation of error. Letting 8C repre-
sent the uncertainty in measuring C and 6D
the uncertainty in D, the uncertainty in 7t is
givenby 8t = = [8D/D + (6C)/C].

We measured five circular objects,
graphed the results, and obtained & =
3.132 £ 0.015 using error analysis tech-
niques. The only physical condition
necessary is that the objects be perfectly
circular. This experiment allows stu-
dents to test if three-dimensional space
is Euclidean within the limits of the
measurements.

In conclusion, we learned a lot trying
to discover simple numbers in physical
systems. It was V2 that led us to thinking
how the properties of systems scaled
with size. The natural logarithm e made
us find a universal ingredient in decay-
ing systems: linearity. The most inter-
esting aspect of these experiments oc-
curs when you don’t get the number
expected. Then you are challenged to
understand your experimental errors
and the essential physics that makes
these numbers so unique. We hope that
your class will find these experiments
interesting, and hope they will discover
ways to measure these and other special
numbers in nature.
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