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We present a fun activity that can be used 
to introduce students to error analy-
sis: the M&M game. Students are told 

to estimate the number of individual candies plus 
uncertainty in a bag of M&M’s. The winner is the 
group whose estimate brackets the actual number 
with the smallest uncertainty. The exercise produces 
enthusiastic discussions and serves as a good “mixer” 
for the first day of a laboratory class.

Estimating uncertainties in measurements and  
propagation of uncertainties are important laboratory 
skills that should be taught to all students of physics 
at some level.1 However, for the most part, students 
are more interested in the value of the measurement 
itself than in its uncertainty. They tend to view error 
analysis as tedious busy work, which takes away from 
the enjoyment of the experiment. This is unfortunate 
but understandable since in undergraduate labora-
tory experiments, uncertainties usually seem neither 
particularly relevant nor exciting to determine. To best 
motivate the students, activities should be designed 
for which the uncertainty is as important as the value 
of the measurement itself.

We would like to share a fun activity that has been 
quite successful in getting our incoming physics stu-
dents to think about uncertainties. On the first day of 
the laboratory class, we play the “M&M game.”2  The 
goal is to estimate the number of candies in a particu-
lar bag of plain M&M’s. We divide the students into 
groups of two to four members. Each team needs to 
come up with a number and an uncertainty for the 
number of candies in the bag, for example 101  4.  

Alternatively, the students can decide on a range for 
the number of candies. To make their estimates, the 
only tool the students are allowed to use is a balance.  
Each group is given an unopened bag of M&M’s, an 
empty wrapper of the same size, and five to 10 loose 
M&M candies. After everyone has made their esti-
mates with uncertainties, we count the actual number 
in the bag. The winner is the team with the smallest 
uncertainty (or range) whose estimate brackets the 
actual number. If there is a tie under these rules, the 
group closest to the actual number wins. The prize is 
a new bag of M&M’s for each member of the winning 
team.

This exercise leads to a lot of discussion within each 
team. Most students agree that the best way to obtain 
N, the number candies in the bag, is by the following 
formula: N = (Mbag – Mwrapper)/m, where Mbag is the 
mass of the bag, Mwrapper is the mass of the wrapper, 
and m is the average mass of an individual candy.  
Most groups (but not all) will determine an average 
value for m by finding the mass of all 10 candies and 
dividing by 10.

The real decision making is over what value to 
choose for the uncertainty ∆N. If ∆N is very large, the 
true number will most likely fall into their range, but 
they will probably not win since other groups might 
have a smaller ∆N. If ∆N is too small (i.e., 1) then 
their chances of having the true number fall with their 
range is small. Thus, the chance of winning is reduced 
if ∆N is too large or too small, and it is critical to 
choose an appropriate value for ∆N. Since there is a 
prize to be won, the students are motivated to choose 
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the best value for ∆N. During the discussion phase 
of the exercise, we usually suggest that they choose 
∆N such that they might bracket the actual number 
68% of the time. However, even with this advice some 
groups decide to take a chance and choose ∆N very 
small.

When the students are finished with their analysis, 
they write their estimates on the board. Some esti-
mates from a recent class of engineering/science stu-
dents are: 103  2, 104  1, 105  1, 106  2, 107 
 3, and 109  6. At this stage, we often have a class-
room discussion on how each team decided on their 
uncertainties. After hearing each group’s comments, 
the instructor can describe a “textbook” method, 
which we present in the next paragraph.  Finally, the 
bag is opened, the excitement mounts as the candies 
are counted, and the winner(s) are determined amidst 
cheers. For this class, there were 107 M&M’s in the 
bag. The winning group was the one that estimated 
106 with an uncertainty of 2 since they bracketed the 
value with the smallest uncertainty. Although one 
group’s estimate was 107, the true value, this group 
did not win the contest because their uncertainty was 
larger, namely 3. However, they also received a bag of 
M&M’s as a prize for their accurate measurements.

After the groups have reported on how they ob-
tained their errors, a “textbook” method for the de-
termination of the uncertainty is explained as follows. 
The number N is given by: N = M/m = (Mbag –  
Mwrapper)/m. We need to estimate the uncertainty for 

each of the three measurements and propagate the er-
rors. The absolute uncertainty in M is the sum of the 
absolute uncertainties in Mbag and Mwrapper, i.e., ∆M 
= ∆Mbag + ∆Mwrapper. The relative uncertainty in N is 
the sum of the relative uncertainties in M and m, i.e., 
∆N/N = ∆M/M + ∆m/m. Using our balance, whose 
smallest division on the scale is 0.1g, the engineering 
students first estimated an instrument uncertainty of 
0.1 g for a single mass measurement:1 Mbag = (90.2 
 0.1) g and Mwrapper = (2.2 0.1) g. This gives M 
= (88.0 0.2) g, or a 0.25% error in M. One group 
determined the mass of 10 candies to be (8.5 0.1) g, 
giving a 1.2% percent error in the mass of 10 M&M’s. 
The same relative error applies to a single candy; thus, 
the largest percent uncertainty is in m. Adding the two 
percent errors results in a 1.45% error or 1.5 in N. 
Since N for the different groups varied by more than 
one M&M, students felt that this error estimate was 
too small. Realizing there may be systematic errors, 
they decided to use 0.15 g instead of the smallest scale 
increment, which gives a 1.8% error in m and a 0.4% 
error in M. After some discussion, the class as a whole 
was comfortable with a 2.2% error or an uncertainty 
in N of 2 or 3.  

We next calculate the class average and standard 
deviation of the six values of N, which is 105.7  
2.0 for this class. Finally, we briefly discuss some pos-
sible systematic errors. Some students remark that 10 
candies are not necessarily a good representation of 
the whole batch. This is an opportunity to discuss the 
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difference between instrument uncertainty and sample 
uncertainty in estimating m. In this case, the sample 
uncertainty is caused by the variation in mass of each 
M&M. The uncertainty is statistical and results from 
using a small random sample to predict the proper-
ties of a larger one, a practice done in opinion polls.  
Another systematic uncertainty might be due to the 
fact that we are all using the same type of balance. The 
final consensus is that we would use an uncertainty of 
2 or 3 if we were to publish our results.

There are many variations of this activity. To in-
crease the uncertainty, peanut M&M’s and/or a larger 
bag of candies can be used. Individual peanut M&M’s 
have a larger variation than plain ones. We have tried 
M&M bags with as many as 460 candies inside, and 
the students enjoyed the challenge of estimating this 
large number. Giving the students a smaller number of 
individual candies also increases the error in measur-
ing N. We tell the students that skill plays a big role in 
winning the prize. The group that makes the most ac-
curate measurements of Mbag, Mwrapper, and m has the 
best chance of winning. A correct estimate of ∆N will 
also improve their chance of winning. To reward more 
students, we usually give a prize to the group who 
comes closest to the actual number.  

Although the candy exercise does not pertain to a 
physical phenomenon, it is a simple scientific prob-
lem in which the students can use skills they already 

possess, e.g., measuring and logical reasoning. The 
instructor can give the students little or no initial guid-
ance and instead let them come up with their own 
method to obtain the solution. The goal is to measure 
a definite integer value that will be determined at the 
end of the exercise, rather than being compared to a 
value from the literature. The answer is unknown to 
everyone and is found at the end by opening the bag.  
The nicest aspect of the problem is that it leads to a 
lot of classroom discussion in which the students can 
share their ideas in estimating the uncertainty. We use 
this activity on the first day of lab, where it also serves 
as a “mixer” and as a sweet way to show that error 
analysis can be fun.
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      Many Kinds of Eyes: The Eyes Have It

“In the animal kingdom, there are diverse types of camera eyes. For example, fish eyes 
have a spherical gradient index lens. The bird eye has the added control of reshap-
ing and deforming the cornea as well. Brucke’s muscles attached to bony ossicles in 
reptiles and birds actively change the lens thickness. Birds have an additional muscle, 
Crampton’s muscle, which can alter the shape of the cornea. In contrast, the whale 
eye uses hydraulics to move the lens itself closer or farther from the retina; a chamber 
behind the lens is filled or emptied with fluid depending on the focal length needed. 
This design allows for good vision in and out of the water, and compensates for the 
increased pressure in deeper aquatic environments. The protractor lentis in some 
amphibian eyes moves a fixed-shape lens closer or farther from the retina for accom-
modation.”1  

1.  L.P. Lee and R. Stevens, “Inspirations from Biological Optics for Advanced Photonic Systems,”  Sci. 310, 1148–

1150 (Nov. 18, 2005).
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